
Abstract

We would like to understand the interests of our
target audience. Please register at
www.softmetaware.com/whitepapers.html to
provide us with some information about yourself,
and to obtain access to the full content of all
SoftMetaWare white papers.

http://www.softmetaware.com/whitepapers.html

SoftMetaWare

Model-Driven
Software Development

An emerging paradigm for
 Industrialized Software Asset Development

Author: Jorn Bettin
Version 0.8

June 2004

Copyright © 2003, 2004 SoftMetaWare Ltd.

SoftMetaWare is a trademark of SoftMetaWare Ltd.

All other trademarks are the property of their respective owners.

Page 2 Model-Driven Software Development

Revision History

Version Author Description

0.1 - 0.6 Jorn Bettin Initial versions, January & February 2004

0.7 Jorn Bettin

Update May 2004.

Included pointers to papers on MDSD
Teams and MDSD Activities (process
description).

Added diagram on MDSD adoption strategy
in section Economics of getting from X to
MDSD.

Added a glossary.

0.8 Jorn Bettin

Update June 2004.

Updated the Techniques section with
further best practices.

Included pointers to the paper on
Complexity & Dependency Management,
which provides the link between MDSD and
Design By Contract as well as the link
between MDSD and the Open Source
concept.

Included reference to role descriptions in
MDSD Teams paper.

Page 3 Model-Driven Software Development

REVISION HISTORY ...2

1 INTRODUCTION ...6

1.1 YESTERDAY'S HYPE..6

1.2 TODAY'S HYPE..7

1.3 MODEL-DRIVEN SOFTWARE DEVELOPMENT..8

2 RELATING MDSD TO RELEVANT SOFTWARE DEVELOPMENT METHODS9

2.1 MDSD AND SOFTWARE PRODUCT LINE ENGINEERING..9

2.2 MDSD AND THE OMG'S MODEL-DRIVEN ARCHITECTURE..10

2.3 MDSD AND THE RATIONAL UNIFIED PROCESS..12

2.4 MDSD AND AGILE SOFTWARE DEVELOPMENT ...13

Individuals and Interactions over processes and tools ..13

Working software over comprehensive documentation ...13

Customer collaboration over contract negotiation..14

Responding to change over following a plan...14

3 THE ECONOMICS OF SOFTWARE DEVELOPMENT...15

3.1 THE SOFTWARE LIFECYCLE: FROM INCEPTION TO OBSOLESCENCE ...16

3.2 A NEW ITERATION OF THE IRON TRIANGLE ...18

3.3 ALIGNING BUSINESS AND IT ..19

3.4 METRICS COMPARING MDSD WITH OTHER APPROACHES ..21

3.5 THE ECONOMICS OF INCREMENTALLY GETTING FROM X TO MDSD...21

4 MYTHS ABOUT MODEL-DRIVEN APPROACHES ..22

5 TECHNIQUES...26

5.1 PROCESS AND ORGANIZATION ...27

Iterative Dual-Track Development ..27

Fixed Budget Shopping Basket ...28

Scope Trading..29

Validate Iterations ...31

Extract the Infrastructure ..32

Build a Workflow ...34

5.2 DOMAIN MODELING...34

Formal Meta Model ...34

Talk Meta Model..35

Architecture-Centric Meta Model..35

5.3 TOOL ARCHITECTURE ..37

Implement the Meta Model ..37

Page 4 Model-Driven Software Development

Ignore Concrete Syntax ...37

Modular, Automated Transformations...38

Model Transformations are First Class Citizens ...39

Aspect-Oriented Meta Models ...39

Descriptive Information In Models..39

5.4 APPLICATION PLATFORM DEVELOPMENT ..40

Two-Stage Build...40

Separate Generated and Non-Generated Code ...40

Rich Domain-Specific Platform ...42

Technical Subdomains ...44

Model-Driven Integration..45

Fully Externalized Interface Definitions..46

Generator-based Aspect-Oriented Programming..46

Produce Nice-Looking Code … Wherever Possible ..47

Descriptive Meta Objects...48

Framework/DSL Combination...49

External Model Markings ..50

Generation-Time / Run-Time Bridge ...50

Generation-Time Reflection...50

Generated Reflection Layer ...51

Gateway Meta Classes...51

Make Problem-Solution Mapping explicit ...52

Dispatcher Template..52

Automatic Dispatch ...53

Three Layer Implementation..54

Forced Pre/Post Code ...54

Dummy Code ...54

Believe in Reincarnation..55

Inter-Model Integration with References...55

Leverage the Model ...56

Build an IDE..56

Use the compiler ..56

Select from Buy, Build, or Open Source ..56

6 WORK PRODUCTS ...58

7 ROLES..58

8 TEAMS...58

Page 5 Model-Driven Software Development

9 STANDARDS...59

10 SKILLS...59

11 GLOSSARY ...61

Agile Software Development..61

Application Engineering ..61

Component Based Development ..62

Domain Engineering..62

Enterprise Architecture..62

Non-Strategic Software Asset ..62

Model-Driven Software Development..62

Open Source Software ...63

Product Platform ...63

Rational Unified Process ...63

Software Architecture ..64

Software Asset..64

Software Liability...64

Software Product Line ...64

Software Product Line Engineering...64

Strategic Software Asset ..64

Unified Modeling Language ..64

12 REFERENCES ..65

Page 6 Model-Driven Software Development

1 Introduction
In the 21st century software is pervasive, the software industry has become one of
the largest industries on the planet, and many of today’s most successful companies
are organizations built around the production of software and related services.

This article investigates the root causes of escalating software development costs,
and presents an overview of an emerging paradigm for industrialized software
development. Software is a critical part in the "engine room" of all technology-based
and many service-based industries today. High software development costs have a
huge economic impact, and poorly designed software that restrains user productivity
possibly has an even larger impact. One result of these costs is significant pressure
to shift problems to low-cost locations, usually referred to as off-shoring or
outsourcing.

It is easy to overlook the fact that software development productivity varies by as
much as an order of magnitude between organizations, and that off-shoring
consequently is not always the best option for cost reduction in terms of achievable
gains and risk exposure.

Many business software vendors have been side-tracked by keeping pace with the
constantly changing set of implementation technologies. Neither off-shoring nor the
next product release from tool vendors that provide infrastructure such as integrated
development environments, middleware, databases, operating systems, etc. will
solve productivity problems that are caused by crumbling architectural integrity of
applications, poor dependency management within enterprise systems, and
dysfunctional software development processes.

1.1 Yesterday's hype
The 90s were dominated by two major paradigms for software development: in the
early 90s the concept of Computer Aided Software Engineering (CASE) and 4GLs
made their appearance, and in the second half of the decade Object-Orientation
made it into the mainstream. CASE methodologies and associated tools largely
collapsed under the weight of hefty price tags and proprietary approaches that
conflicted with the increasing demand for open standards. Often organizations were
burnt by more than one vendor, and out the door went not only the tools, but also the
concept of model-driven, generative approaches. Object orientation also did not live
up to all expectations, but here the picture is somewhat different: it provided the
foundation for component-based development, and object-oriented languages are
there to stay, having successfully replaced most general-purpose procedural
languages. With the fall of 4GLs and CASE, tool vendors focussed on object
modeling tools, which led to the Unified Modeling Language (UML) notation and tools
based on a "round-trip" philosophy, where users can switch seamlessly between a
UML model and corresponding implementation source code. Superficially these tools
impress by their ability to keep diagrams and source code in synch. A closer analysis
however reveals that these tools don't in any way increase productivity, at best they
provide a mechanism for producing nice looking documentation.

Page 7 Model-Driven Software Development

1.2 Today's hype
These days the boundaries between UML tools and IDEs are evaporating. Modern
software development tools provide sophisticated wizards that assist users in
applying design patterns, in building user interfaces, and in generating skeleton code
for interaction with frameworks used in popular implementation technology stacks.
Although this represents an improvement over earlier UML tools that were only
capable of generating skeleton class structures, the approach smacks of the
inflexibility of earlier tools. For example, if a design pattern needs to be changed, the
current tools are not capable of automatically propagating the implications of the
changed pattern through the code base.
Some traditional CASE vendors and several new players are exploiting the
weaknesses of mainstream IDEs to offer Model-Driven Architecture (MDA) tools that
allow users to specify precisely how high-level UML models should be mapped onto
their specific implementation technology stack. MDA is a term coined and owned by
the Object Management Group, a consortium that includes most mainstream vendors
of software development tools. The MDA approach relies on UML and customizable
code generation, and explicitly distinguishes between the concept of Platform
Independent Model (PIM) and Platform Specific Model (PSM). In practice,
commercial MDA tools are expensive, and rely on proprietary languages to specify
the transformations between PIM and implementation code. This means that similar
to CASE tools, there is an element of vendor dependence when going down the MDA
track. An important aspect that is not addressed by MDA is the development of a rich
domain layer that encapsulates core domain business logic; the UML notation is
largely inadequate for the specification of domain business logic. Generative
techniques as used in MDA are ideal for the generation of framework completion
code, but they do not in any way eliminate the need for well-designed domain-
specific frameworks. On the positive side, MDA is an approach that allows designers
to raise the level of abstraction of specifications and to capture implementation
technology knowledge in machine-readable format. Currently the OMG is working on
a specification for a standardized language for model transformations. The limited
degree of practical UML tool interoperability enabled through the OMG's XMI
standard can be used as a reference point for realistic expectations for future MDA
tool interoperability.
In parallel with advances in software development tools, there has been a major shift
in software development methodologies. The emergence and rapid rise in popularity
of agile methodologies is a good indication that methodologies perceived as being
heavy are going out of fashion. If heavier methodologies were the flavor of the day in
the late nineties, it does not mean that the majority of organizations actually ever fully
embraced these methodologies wholeheartedly and followed them to the letter. On
the contrary, it is much more an admission that high-ceremony approaches are only
practical for the development of life-critical applications, where the associated costs
of a heavy process can be justified and absorbed under the heading of quality
assurance. For development of more mundane business application software, any
process that involves a high degree of ceremony is incompatible with the push of the
markets for lower software development costs. However, the focus of agile
methodologies is largely limited to the management and process aspects of small to
medium size software projects. An agile method such as Extreme Programming (XP)
alone does not provide sufficient guidance for building high quality software, and it is
no substitute for necessary analytical capabilities and software design skills within a
team.

Page 8 Model-Driven Software Development

1.3 Model-Driven Software Development
The market for software development methodologies and tools is largely defined by
the vast majority of software development projects, which is undertaken by teams of
up to ten people, and typically delivers highly specific applications. This means that
many software development methodologies - in particular of the agile variety, and
many tools don't explicitly cater for software development in-the-large, i.e. distributed,
multi-team software product development and projects involving 20+ people.

In the approach we call Model-Driven Software Development (MDSD) we combine
aspects from popular mainstream approaches that can scale to large-scale
industrialized software development with less well-known techniques that are needed
to prevent architectural degradation in large systems, and with techniques to
automate the repetitive aspects of software development.

MDSD can be defined as a multi-paradigm approach that embraces

• domain analysis,

• meta modeling,

• model driven generation,

• template languages,

• domain-driven framework design,

• the principles for agile software development,

• the development and use of Open Source infrastructure.

The remainder of this white paper explains how MDSD weaves together these
ingredients into a consistent paradigm for software development. The foundation is
provided by a small set of core values.

In the list of values below, the term "software factory" warrants an explanation. We
use the term software factory to refer to domain-specific assets, in particular domain-
specific frameworks, which are used as a platform to build a family or a series of
applications using a highly automated production process.

1. We prefer to validate software-under-construction over validating
software requirements

2. We work with domain-specific assets, which can be anything
from models, components, frameworks, generators, to
languages and techniques.

3. We strive to automate software construction from domain
models; therefore we consciously distinguish between building
software factories and building software applications

4. We support the emergence of supply chains for software
development, which implies domain-specific specialization and
enables mass customization

Considering the need to communicate the intention of these values to a wider
audience beyond the software engineering community, we also use the term
Industrialized Software Asset Development (ISAD) to refer to MDSD. This term
accurately describes the state-of-the-practice (2004): domain-specific assets usually

Page 9 Model-Driven Software Development

need to be built, and only in some cases can they be bought off-the-shelf or are
available as a public asset. To fully understand how this picture will evolve in the
future requires a discussion of the economics of software development in a separate
section in this paper.

2 Relating MDSD to Relevant
Software Development Methods

2.1 MDSD and Software Product Line Engineering
Key features of MDSD come from the field of domain engineering, in particular the
differentiation between building a product platform including relevant application
development tools, and building software applications. In MDSD the product platform
for a product family or product line is developed using domain-driven design
principles, and the application engineering process is automated as far as possible
using model-driven generative techniques.

One way of looking at MDSD is as a set of techniques that complements domain
engineering (DE) methodologies such as FAST [WL 1999] or KobrA [ABKLMPWZ
2002], providing concrete guidance for:

• managing iterations,

• co-ordinating parallel domain engineering and application engineering,

• designing model-driven generators,

• and designing domain-specific application engineering processes

MDSD is intended to be compatible with DE methodologies such as FAST or KobrA,
therefore the main focus of MDSD is on the description of techniques, and not on the
specification of work products which can be adopted as required from proven domain
engineering methodologies.

The concept of core "assets" from DE carries through into MDSD and is directly
reflected in "Industrialized Software Asset Development" (ISAD), the subtitle of
MDSD. The relationship between MDSD and DE can be compared to the relationship
between Component Based Development and Object Technology: one is building on
the other, and the terminology of MDSD can be seen as an extension of the
terminology for DE. This means it makes little sense to draw up a point by point
comparison between the two approaches.

Just as DE, MDSD leverages the concept of component specifications that are
separate from component implementations. MDSD goes beyond the design by
contract principles [Bettin 2004c], and mandates Fully Externalized Interface
Definitions (see Techniques section in this document), which provide not only a very
important tool for dependency management, but also provide an explanation for the
importance of the Open Source concept for innovation in general, and for MDSD in
particular.

