
Abstract

We would like to understand the interests of our
target audience. Please register at
www.softmetaware.com/whitepapers.html to
provide us with some information about yourself,
and to obtain access to the full content of all
SoftMetaWare white papers.

http://www.softmetaware.com/whitepapers.html

SoftMetaWare

Model-Driven Software
Development Activities

The Process View of an MDSD Project

Author: Jorn Bettin
Version 0.1

May 2004

Copyright © 2003, 2004 SoftMetaWare Ltd.

SoftMetaWare is a trademark of SoftMetaWare Ltd.

All other trademarks are the property of their respective owners.

Page 2 MDSD Activities

1 INTRODUCTION ...2

1.1 NOTATION AND TERMINOLOGY..3

1.2 CHARACTERISTICS OF MODEL-DRIVEN SOFTWARE ...4

2 THE DOMAIN ENGINEERING PROCESS..5

2.1 REFINE PRODUCT PLATFORM DESIGN..6

2.2 REFINE PRODUCT PLATFORM & INFRASTRUCTURE IMPLEMENTATION ..7

2.3 VALIDATE THE ARCHITECTURE USING AN EXAMPLE APPLICATION ...8

2.4 TEMPLATIZE FRAMEWORK COMPLETION CODE ...9

3 THE APPLICATION ENGINEERING PROCESS...10

3.1 APPLICATION DESIGN ..10

3.2 APPLICATION GENERATION..11

3.3 APPLICATION DEVELOPMENT...12

3.4 APPLICATION COMPILATION ..13

4 USING MODEL-DRIVEN SOFTWARE..14

5 TOOL SUPPORT FOR MDSD ..15

6 REFERENCES ..16

1 Introduction

The Model-Driven Software Development (MDSD) [Bettin 2004a] paradigm is
intentionally not prescriptive about most micro-level activities in the software
development process. This enables a model-driven approach to be used in
conjunction with a range of agile techniques, and with one of several methodologies
for software product line engineering. At a macro-level however, the process and
activities in Model-Driven Software Development are quite different from the activities
in traditional iterative software development. Hence this article defines the essential
macro-level software modeling and development activities that are characteristic
of the MDSD paradigm.

Note that this article does not cover "non-development" activities such as domain
analysis, requirements management, software supply chain design, and project
management. A down-to-earth description of the essence of domain analysis is
provided in [Cleaveland 2001], and software supply chain design for MDSD is
described in [Bettin 2004b]. Further topics are covered as patterns in [Bettin 2004a]
and [VB 2004].

Page 3 MDSD Activities

1.1 Notation and Terminology
The best way of describing a high-level view of a process is in diagrammatic form.
Besides UML (Unified Modeling Language) activity diagrams we make use of
somewhat less formal diagrams as appropriate, making use of the following notation:

<specification document> Such as standards definitions,
textual requirements specifications, etc.

<tool> Such as a specification tools, generators, etc.

<formal specification
 in machine readable

format>
Component specifications, source code etc.

<software component> Executable software components.
The optional triangular extensions
symbolise interfaces

Figure 1 Notation - Shapes

We use the following color-coding scheme to differentiate different types of
intellectual property, ranging from strategic proprietary IP to open industry standards.

External, 3rd Party
Infrastructure Such as J2EE, .NET, Oracle, Internet Explorer, etc.

Industry Standards Such as HTTP, SOAP, HTML, XML, etc.

Domain-specific specifications, core application business logic
and associated specifications

Strategic assets, such as a domain-specific product platform,
standard UI components, security framework, etc.

Strategic IP (product
platform & infrastructure)

Strategic IP (applications)

Non-Strategic IP

Generatable
Infrastructure Code

Non-strategic assets, such as legacy code and UI code

Typically infrastructure “glue” code and code to integrate with
domain-specific product platform, legacy code,
and external systems.

Figure 2 Notation - Colors

Page 4 MDSD Activities

1.2 Characteristics of Model-Driven Software
In MDSD we use the term Model-Driven Software to refer to software that is
developed using a model-driven approach and generative techniques, as the quality
attributes (technical consistency, consistency of user interface, maintainability, ...) of
software developed and maintained that way are different from the quality attributes
of "ordinary" software. Model-Driven Software can be constructed using endless
possible combinations of implementation technologies, and leveraging numerous
design patterns in various ways, which is why the term "Model-Driven Architecture®"
that was introduced by the Object Management Group is probably not the best
choice of words.

Generated
Glue Code

External
Infrastructure

Industry
Standards

Industry
Standards

External
Infrastructure

Legacy Core
(Domain-Specific)

External Systems

...

...

...

 Component
Communication

Framework

...

 Domain-specific
Product Platform

Applications
(Business Logic)

Applications
(User Interface)

 Persistence Framework UI Components

Figure 3 Characteristics of Model-Driven Software

In Model-Driven Software Development and in the design of Model-Driven Software
we

 Leverage existing skill sets by capturing domain-specific knowledge (IP) in a
human and machine readable format

 Increase maintainability of code base by insulating strategic IP from
implementation technology churn

 Use automation to achieve organizational agility, reduce software development
costs, and decrease time-to-market

Figure 3 shows that the difference between architecture-centric MDSD and MDSD
with a rich domain-specific product platform (ARCHITECTURE-CENTRIC MDSD pattern
in [Bettin 2004a], [VB 2004]) is small: In architecture-centric MDSD there is no
"domain-specific product platform" and the size of the code base that needs to be
manually maintained is larger − all domain-specific business logic needs to be hand-
crafted, but otherwise the overall picture in terms of leveraging industry standards
and using external infrastructure is unchanged. The development of a domain-
specific product platform is an incremental process once architecture-centric MDSD
is established.

