Metadata driven multi-artifact code generation using
Frame Oriented Programming

Frank Sauer
frank.sauer@trcinc.com
The Technical Resource Connection
A wholly owned subsidiary of Perot Systems Corporation

Abstract

This paper describes Frame Oriented Programming
(FOP) and shows that this programming technique and
its implementation in the Frame Processing Language
(FPL) is an effective form of template driven code
generation and ideal for Software Product Lines and
Model Driven Architectures. It demonstrates how
multiple artifacts in different target languages can be
generated in a single pass from arbitrary XML based
meta-data, such as XMI [6] or W3C XML schemas
and how frames modularize templates using Object
oriented as well as Aspect Oriented techniques.

Introduction to FOP

Frame Oriented Programming is based on Frame
Technology which was invented by Paul G. Bassett in
1978 but first published in [1] and culminated in his
milestone 1996 book titled “Framing Software Reuse:
lessons from the real world[2]”. In one sentence,
frames are a universal mechanism to package
information into components and participate in an
automated assembly process in which frames adapt —
and are adapted by — other frames. Frames are not
particular about the language used to describe the
packaged information; this could be any conceivable
programming language or even natural languages such
as English. This feature of frames makes them an ideal
concept for template driven artifact generation. The
ability to apply frame technology to arbitrary text
allows the modularization techniques of Object
Oriented Programming (OOP) as well as Aspect
Oriented Programming (AOP) [4] to be applied to any
textual artifact, which was previously impossible. [7]
Explains how FOP unifies the ideas of both OOP and
AOP.

Frame hierarchies

A frame hierarchy defines how frames are combined
to make other frames. Frame hierarchies can be
thought of as a parts-explosion diagram. A higher-
level frame is an assembly of its lower level frames
and the arrows in a frame hierarchy diagram can
therefore be labeled as ‘part-of’. Figure 1 shows an
example frame hierarchy. In this frame hierarchy the
top-level frame (or specification frame) a has two
subassemblies, b and c. The b and ¢ frames
themselves can be considered specification frames for
their respective sub-hierarchies. Frame e is part of
both b and c; however, b and ¢ receive separate
copies of frame e in the assembly process. The
reverse of the part-of relationship between frames is

far more interesting and forms the basis for the rest of
the ideas set forth by FOP. When frames b and c are
part of frame a, frame a is said to ‘adapt’ frames b

and c.
A

Context
Sensitivity

Figure 1 Example frame hierarchy

The adapt relationship on frames

The properties of the adapt relationship can be
expressed as follows (from [1], let > denote the adapt
relation, and X and Y and Z be frames):

vX: X=X (reflexive)
VXY, Z: X2YAY2Z=>X>Z (transitive)
VX)Y: X2YAY2XeX=Y (non-symmetric)

These three properties imply that > imposes a partial
ordering on the frames. This means that frames indeed
form a lattice as shown in Figure 1 and that the terms
frame and frame hierarchy can be used
interchangeably. Another way to think of frames
adapting each other is to rename the adapt relationship
to “reuses”. In figure 1, frame a reuses frames b and
c. In general, if a frame X reuses a frame Y, then
frame Y is as reusable as X, or more so. This is easy to
see because whenever X is reused, so is Y, but Y can
be used in another frame, say Z, without using X. This
is the reason why frame hierarchies are drawn the way
they are, with the most context-specific frame (the
specification frame) at the top, and the most context-
free - and therefore most reusable - frames near the
bottom of the diagrams.

In the remainder of this paper I will use the term
ancestor frame to mean the following:

Frame X is an ancestor of frame Y if X directly or
indirectly adapts frame Y. This will place frame X
closer to the specification frame than frame Y.

Frame commands

In addition to the content being assembled, frames
contain assembly instructions called frame commands.
This section will examine the most relevant frame
commands. The syntax used in this section and the rest
of the paper is from the author’s frame processing
language called FPL. This is an XML based
implementation of frame technology and uses XML
tags for the frame commands and XML content as the
information to be assembled, much like XSLT does in
XML transformations. The FPL syntax was also
inspired by XVCL (XML based Variant Configuration
Language [3]). Here is a basic example of a frame in
FPL:

written in the frame containing the <break>. This is
an important feature of FPL and will be explored in
much more detail in following sections. If no ancestor
frame removes or replaces the break, the original
default content of the break will be evaluated. The
following example is a frame that replaces the optional
content of frame £1 with alternative content.

<frame name="f1" language="text">
this is normal content
<break name="optional”>
this is the default content
</break>

</frame>

<frame name="2" language="text">
<adapt frame="f1">
<replace break="optional">
this is alternative content
</replace>
</adapt>
</frame>

Here is yet another frame £ 3 that adapts £2 and
inserts some extra content after the break:

Each FPL frame is enclosed in a root <frame> tag and
contains content and other FPL commands. This
example has two lines of content with the second line
embedded inside an FPL <break> command. The
<break> command and its companion <adapt> are
the core FPL commands that enable frames to adapt
other frames.

<frame name="f3" language="text">
<adapt frame="f2">
<add-after break="optional">
second line of alternative content
</add-after>
</adapt>
</frame>

A <break> is a named point of variation allowing
ancestor frames to modify the frame containing the
break.

We now have a three level frame hierarchy; £3 adapts
£2, which in turn adapts £1. The result of running £3
through the frame processor is a text file with this
content (ignoring indentation):

An ancestor frame adapting frame £1 does so with the
<adapt> command which is the only mechanism by
which frames are combined. Figure 2 shows the XML
syntax of the <adapt> command.

, replace

add-after

add-before

E E T I. T I
. I

Figure 2 the <adapt> command structure

The syntax in Figure 2 shows that a frame adapting
another frame has an opportunity to replace, remove or
add content (and more FPL commands) to descendant
frames. These actions occur at the breakpoints labeled
by the <break> commands in the descendant frames.
The allowed content of the <replace>, <add-
before>, <add-after> and <around> commands is
any sequence of valid FPL commands, not just
content. These FPL commands are executed in the
context of the <break> being adapted, as if they were

this is normal content
this is alternative content
second line of alternative content

Note that £3 directly modifies a <break> defined in
£1, an indirect descendant. Frame £2 - being adapted
by £3 - also adapts the same <break>in f1. In
general, any frame along the path from the
specification frame to a <break> can adapt that
<break>. Table 1 enumerates the precedence rules
FPL follows to determine which adapt operations to
perform. In this table, a value of “ancestor” means that
only the ancestor operation will be performed and a
value of “both” indicates that both operations execute.
The columns are ancestor operations and the rows are
descendant operations on the same break.

A remove | replace | around | add- add-
D before | after
remove ancestor | ancestor [both both both
replace ancestor | ancestor [both both both
around ancestor | ancestor | ancestor | both both
add-before ancestor | ancestor [both both both
add-after ancestor | ancestor [both both both

Table 1 Precedence rules for adapt operations

In general, anything added before, after or around a
break becomes part of the break and ancestor

<remove> or <replace> operations take precedence
over all operations performed on the same break at
lower levels in the frame hierarchy because higher
level frames have more knowledge of the integration
context and are thus better suited to decide how to
modify the sub-assembly represented by the lower
level frames. The <add-before> and <add-after>
operations have a cumulative effect, and are executed
top-down and bottom-up respectively. There is no
theoretical reason why only one <around> should be
allowed. This is a current implementation deficiency
of FPL and will be fixed in a future version. At that
time, the <around> operation will behave like <add-
before> and <add-after> and the results will be
cumulative.

The <break> command allows for a seamless
evolution of components over time because the
insertion of an extra <break> in an existing frame
does not alter its structure or behavior, unless an
ancestor frame is explicitly adapting it. This means
that frames developed in one context can be easily
evolved and adapted to other unanticipated contexts
and this will not have any effect on existing ancestor
frames already reusing the frame. Since these existing
ancestors are unaware of the new <break>, its
original content will be used. In other words, instead
of changing the frame itself, it becomes (more)
changeable, but the change occurs where it is needed,
namely in the new context (the new ancestor frame).
This is a critical feature of FPL that makes it ideal for
application in a Software Product Lines [5]. Figure 3
depicts the evolution of a component over time.
During the development of App2, a modification of
C2 is needed. C2 is modified by surrounding some
existing content in C2 in a <break> command and
App2 uses this new <break> to modify C2 in the
context of App2. When Appl needs to be rebuilt, we
can safely use C2’ for the reasons outlined above.

C2’ = C2 + <break>
Figure 3 Evolution of Components

v

time

Frame Variables

In addition to the <break>/<adapt> mechanism
outlined in the previous section, FPL supports
variables as another mechanism to customize frames.
FPL variables follow a scope rule similar to the
precedence rule for <adapt> operations:

In other words, here too, context-sensitive overrides
context-free. This allows for default values to be set
anywhere in a frame hierarchy and override the
defaults in any ancestor frame whenever the context
dictates that they should have a different value.
Variables are set with the <set> command and in
addition to a name and a value can contain any
number of named facets, each with its own value. In
the following example a variable named class1 is
created with two facets:

<set var="class1” value="SavingsAccount”>
<facet name="template” value="bean.fpl"/>
<facet name="superclass” value="Account’/>
</set>

FPL commands can access variable and facet values in
any of their attributes, as in the following example:

<adapt frame="${class1.template}” outfile="${class1}.java">
<replace break="extends">extends ${class?.superclass}
</replace>

</adapt>

The scope of a variable v defined in frame X is the
entire sub-hierarchy rooted at X and the value of v will
override the value of any variable named v defined in
the sub-hierarchy rooted at X.

The ${} syntax' to access variables allows for
variables to be used to construct the name of other
variables, e.g. in the previous example
${class${index}} will evaluate to “SavingsAccount”
if ${index} has the value 1. This allows for the
representation of elaborate data structures with simple
variables. The use of variables in the frame attribute of
the <adapt> command allows the structure of the
frame hierarchy itself to be variable. In this example,
the SavingsAccount is constructed from a generic
Javabean frame generating a Java class according to
the Javabean specification.

As stated in the previous section, the <adapt>
operations can contain any valid FPL command, and
this includes the <set> command. The previous
section also defined that any commands contained in
an <adapt> operation execute in the context of the
<break> being adapted. In the case of the <set>
command this implies that the scope of the variable
will be the frame containing the <break>, not the
frame in which the variable is being defined. In fact,
the <set> command is not even executed until the
<break> is reached and the precedence rules dictate
that the <adapt> operation should be performed. This
means that the value of a variable defined inside an
<adapt> operation can depend on any variables
defined in any frame between the adapting frame and
the <break> being adapted. The scope of a variable
defined in the context of an <adapt> operation can be
modified to be the defining frame rather than the
<break> in which it is being executed using the
samelevel="true” attribute on the <set> command.
This allows for information to be passed up the frame

' Adopted from the popular xml based build tool Ant

hierarchy, as opposed to the normal flow down the
hierarchy. The <adapt> command itself also supports
the samelevel attribute which when set to true will lift
up the scope of all variables defined in the adapted
frame to that of the adapting parent frame.

In addition to the scope modifier samelevel, the
evaluation of any ${} variable references within the
value or facets of a variable can be deferred to the time
the variable itself is being referenced by adding
defer="true” to the <set> command.

Functions

Often, the value of a variable needs to be modified in
some way to be useful in the context where it is being
used. For example, if a variable contains a java
package name and is used to define both the package
and the directory structure, the ‘.’s in the package
name need to be replaced with ‘/’s. To support this
kind of functionality FPL defines a number of pre-
defined functions as well as an extension mechanism
to add custom functions (written in java) to the
language. The following example frame shows how a
package name can be morphed into a directory name
using the replace function. Note the use of double
brackets for the start and end of the parameter list.
This syntax was chosen in order not to conflict with
any of the languages that might be used as content.

The above example will iterate over the variables
named class1, class2, etc. for as long as such a
variable exists. For each class it will then adapt the
appropriate template and generate a separate file
named after the class. The next example will do
something very similar, but using a list variable to do
the iteration.

<set var="classes” list="Account,AccountList’/>
<set var="templates” list="bean.fpl list.fpl"/>
<while listvars="classes,templates” >
<adapt frame="§{templates}”
outdir="replace[[${package},.,/]]
outfile="${classes}.java">
</adapt>
</while>

<adapt frame="${class1.template}’
outdir="replace[[${package},.,/]]
outfile="${class1}.java">
<replace break="extends”>extends ${class?.superclass}
</replace>
</adapt>

Other functions include substring, date, uppercase,
lowercase, index-of, sum, length, etc. Functions can be
used anywhere variables can be used. At this time FPL
does not support infix expressions, only functions and
variables.

More FPL Commands

Iteration over a sequence of FPL commands is
achieved with the <while> command. This command
can either iterate over a set of list variables or use the
existence of a variable as its terminating condition.
The following two examples demonstrate each
technique. The index attribute defines the name of a
variable that will be incremented on each iteration of
the <while> command.

Note that no index variable is needed to access the
elements of the lists. Within the body of the <while>
command, references to the list variables being
iterated over will automatically advance to the next
element on each iteration. Note also that both lists
must have the same number of elements.

The main conditional control structure in FPL is the
<select> command. Figure 4 shows the syntax of
this command and the following example illustrates it.

otherwise

%™

t-a

Figure 4 structure of the <select> command

<while defined=" class${c}" index="c" start="1">
<adapt frame="${class${c}.template}”
outdir="replace[[${package},.,/]]
outfile="${class${c}}.java">
<replace break="extends">extends ${class${c}.superclass}
</replace>
</adapt>
</while>

<select var="v">
<when-undefined>
variable v does not exist
</when-undefined>
<when-defined>
variable v exists
</when-defined>
<when value="1" comparator="greater-than">
The value of v is greater than 1
</when>
<when value="foo">
The value of v is “foo”
</when>
<otherwise>
Otherwise should not execute in this example
</otherwise>
</select>

Only one <when-undefined> is allowed inside a
<select> and it has to be the first child. <when-
defined> can also exist only once. Any number of
<when> clauses can be defined and every one for
which the comparator evaluates to true with the

variable’s value on the left hand side and the <when>
value on the right hand side will be executed. If none
of the previous clauses was executed and there is an
<otherwise> clause it will be executed.

In many situations the syntax of <select> is too
verbose and for this reason FPL defines two
commands <ifdef> and <ifndef> which serve as
syntactic sugar for the corresponding version of
<select> without an <otherwise>, e.g.

<ifdef var="v"> is equivalent to:

A

<select var="v">
<when-defined>
</when-defined>

</select>

<ifndef var="v”> is the same as:

A

<select var="v">
<when-undefined>
</when-undefined>
</select>

The FPL language modifies the original Frame
Technology as described in [1] and [2] and XVCL [3]
in some fundamental ways. The differences are these:

e Addition of <around>/<proceed>,

e Use of regular expressions in the <adapt>
operations to match <break> names,

e Addition of functions,

e Modified variable syntax and new or
modified commands,

e Use of XML namespaces to make framing
XML content easier.

e In XVCL, the precedence rule for <add-
before> and <add-after> is ancestor and
the effects are not cumulative.

e Integration with XSLT through the
<transform> command,

e Commands for dynamic XML construction
with the same semantics as
<xsl:element>, <xsl:attribute> and
<xsl:comment>.

Generating multiple artifacts from UML

FPL was initially developed to turn a diverse family of
applications for the insurance industry into a software
product line [5] customizable to the insurance product
each application deals with. The insurance products
are described with XML metadata that is transformed
(using XSLT) into FPL variables and facets that drive
the customizations and assembly of generic
components to create individual members of the
application family. A single specification frame drives
the customization of multiple artifacts in the areas of
business logic (EJBs), presentation logic (JSP and
HTML), configuration files (XML and property files)
and database schemas.

FPL supports the use of XML metadata and XSLT
transformations with a <transform> command.

The following examples show how to generate Java
code and W3C XML schemas from UML models
represented in XMI metadata [6]. Similarly, W3C
XML schemas themselves are a good source of
metadata for generating custom Java/XML bindings.
The construction time architecture of a group of XML
based applications is depicted in Figure 5. Each
application (Appl, ... 3) defines a different XMI
source in a XMI variable. The XMLApp frame uses
this variable and a fixed stylesheet to transform the
XMI to a FPL data structure using variables and
facets. This data structure is used by the lower level
frames to customize the two template frames named
generic class and generic schema. This decoupling of
the actual metadata from the frames has the advantage
that metadata can be easily changed (for example
XMI-1.0 to XMI-1.1) simply by plugging in a
different XSL stylesheet.

For-every
attribute

Generic For-every For-every Generic
class operation relation schema

Figure 5 Generating multiple artifacts from UML metadata

The XMI2Java frame uses the metadata to generate a
Java class for each class found in the metadata, the
XMI2XSD frame uses it to generate elements in the
schema for each class encountered in the metadata.
Both these frames use common frames called for-
every-attribute and for-every-relation. The following
is the for-every-attribute frame:

<frame name="for-every-attribute" language="fpl>
<ifdef var="class-${classname}.attribute-list">
<set var="attributes"
list="${class-${classname}.attribute-list}"/>
<while listvars="attributes" index="attr">
<set var="attrname" value="${attributes}"/>
<set var="typename"
value="${class-${classname}.${attributes}-type}"/>
<set var="initialvalue" value="null"/>
<ifdef var="class-${classname}.${attributes}-initial">
<set var="initialvalue"
value="${class-${classname}.${attributes}-initial}"/>
<[ifdef>
<break name="aftribute"/>
</while>

<fifdef>
</frame>

This frame accesses the transformed metadata
representing the model and iterates over each attribute
defined for a given class. It sets a few simple variables
such as attrname, typename and initialvalue for use by
the adapting ancestor frames. It does not define any
output but instead allows this frame to be reused many
times by both the XMI2Java and XMI2XSD frames.
These frames <adapt> this frame and <replace> the
<break name="attribute”/> with whatever they
want to generate for each attribute in a class.
Similarly, iterating over every relation defined in the
UML model is encapsulated in this reusable frame?:

<requires vars="packaqe”/>
<while listvars="classlist" index="class">
<set var="classname" value="${classlist}"/>
<log message="generating class ${classname}"/>
<adapt frame="generic-class.fpl"
outdir="replace[[${package},.,/]]"
outfile="${classname}.java"/>
</while>
</frame>

The following is a fragment of the generic-class
frame, which generates the attribute declarations using
the for-every-attribute and for-every-relation frames:

<frame name="for-every-relation" language="fpl">
<ifdef var="class-${classname}.relation-list">
<set var="relations"
list="${class-${classname}.relation-list}"/>
<while listvars="relations" index="rel">
<set var="min"
value="${class-${classname}.${relations}-min}"/>
<set var="max"
value="${class-${classname}.${relations}-max}"/>
<set var="typename"
value="${class-${classname}.${relations}-type}"/>
<set var="rolename" value="${relations}"/>
<break name="relation"/>
<select var="max">
<when value="1">
<break name="singlevalued-relation">
</when>
<otherwise>
<break name="multivalued-relation">
</otherwise>
</select>
</while>
</ifdef>
</frame>

This frame is slightly more complicated than the for-
every-attribute because it decides from the metadata
whether a relation is a single-valued or a multi-valued
relation. This gives ancestor frames the opportunity to
reuse this logic and to simply <adapt> the <break>
for the applicable type of relation.

The following is the XMI2Java frame, which
transforms the metadata and iterates over the classes in
the model.

<I-- attribute declarations -->
<adapt frame="/xmi/for-every-attribute.fpl">
<replace break="attribute">
<break name="${classname}-${attrname}-declaration">
private ${typename} ${attrname} = ${initialvalue};
</break>
</replace>
</adapt>

<l-- allow ancestors to insert extra attributes -->
<break name="${classname}-attributes"/>

<I-- relationship declarations -->
<adapt frame="/xmi/for-every-relation.fpl">
<replace break="singlevalued-relation">
<break name="${classname}-${rolename}-declaration">
private ${typename} ${rolename} = null;
</break>
</replace>
<replace break="multivalued-relation">
<break name="${classname}-${rolename}-declaration">
private List ${rolename} = null;
</break>
</replace>
</adapt>

Note that the actual transformation in XMI2Java is
enclosed inside a <break> command. Ancestor
frames may decide to <remove> this <break> and do
the transformation themselves so its results can be
used in a context larger than the XMI2Java frame
hierarchy. This applies to this example because the
XMLApp frame shares the transformation between the
XMI2Java and XMI2XSD frames, as shown in this
frame:

<frame name="XMI2Java" language="java>
<break name="XMI|2Java-Parameters"/>
<break name="transform">
<requires vars="XMI"/>
<transform xmI="§{XMI}" xs|="/xmi/xmi2fpl.xsI"/>
</break>
<set var="classlist" list="${classes}"/>

2 Code to deal with qualified relations has been omitted for
brevity

<frame name="XMLApp" language="fp!">
<set var="XMI" value="models/claimInfo.xmi"/>
<I-- do the transform here so it can be shared between the
xsd and java generation -->
<transform xml="${XMI}" xs|="/xmi/xmi2fpl.xsI"/>
<I-- generate the schema -->
<adapt frame="XMI2XSD "
outdir="schemas" outfile="app3.xsd"
emit-xml-header="true">
<remove break="transform"/>

</adapt>
<l-- generate the java code -->
<adapt frame="XMI2Java ">
<remove break="transform"/>
</adapt>
</frame>

Observe in Figure 5 that App3 consists not only of an
XMLApp frame, but also includes the xm/marshalling
and clonable frames. These two additional frames
each describe a separate concern that needs to be
injected into the standard generated code of the
XMLApp frame, only in the context of App3. The
xmimarshalling frame contains two methods, toXML()
and fromXML(). The clonable frame contains a
clone() and a deepClone() method that will recursively
traverse all relationships defined in the model and
generate a deep copy of the receiving object. This is a
nice example of separation of crosscutting concerns, a
capability emphasized by AOP[4], a capability of FOP
that is outlined in more detail in [7].

Including method implementations

In contrast to most code generators, which generate
method stubs at best, FPL is well suited to generate
and more importantly, regenerate, entire object
models, including the method implementations. The
following fragment from the for-every-operation
frame shows how this is accomplished.

<break name="${classname}-${opname}-method">
public ${returntype} ${opname} (${arguments}) {
<break name="${classname}-${opname}-implementation"/>

</break>

The for-every-operation frame picks up the method
signature from the UML (XMI), and generates the
appropriate method stub. However, it embeds a
<break> which ancestor frames use to infuse the
actual method implementation. For example, App!
might include the following <adapt> operations:

<add-before break="Period-length-method">
/**
* calculate the length of the Period
*l
</add-before>
<replace break="Period-length-implementation">
return to.getTime() — from.getTime();
</replace>

Since these commands execute each time the code is
regenerated, the method implementation does not get
lost when the code is regenerated, a classic problem
with traditional code generators, and the resulting code
is free from special comments and forbidden zones,
which is usually the solution to this problem offered
by non-frame-based code generators.

Conclusions

This paper has shown how Frame Oriented
Programming is an effective method for template
driven code generation and how it allows for the use
of meta-data to drive the customization of generic
components in the form of frame hierarchies. The
mechanisms of FOP allow for a smooth evolution of
components over time, which makes FOP based code
generation ideally suited for Software Product Lines.

Acknowledgements

I want to thank Paul Bassett for inventing Frame
Technology and for his constructive feedback on this
paper. I also want to thank my colleagues; Joey White
for giving me a reason to do this work, and Oscar
Chappel for the many debates that served to improve
FPL, this paper, and my understanding of CLOS.

References

[1] Paul G. Basset, "Frame-Based Software
Engineering", IEEE Software, Vol. 4, No. 4, pp.
9-16, July 1987

[2] Paul G. Bassett, Framing software reuse:
lessons from real world, Yourdon Press
Computing Series, Prentice Hall, 1996

[3] Wong, T.W., Jarzabek, S., Soe, M.S., Shen, R.
and Zhang, H.Y. “XML Implementation of
Frame Processor” Symposium on Software
Reusability, SSR’01, Toronto, Canada, May
2001, pp. 164-172

[4] Gregor Kiczales, John Lamping, Anurag
Mendhekar, Chris Maeda, Christina Lopez,
Jean-Marc Loingtier, and John Irwin. Aspect
Oriented Programming. In Mehmet Aksit and
Satoshi Matsuoka, editors, ECOOP *97 — Object
Oriented Programming 11 th European
Conference, Jyvdskyld, Finland, volume 1241,
pages 220-242. Springer-Verlag, New York,
NY, 1997

[5] Paul Clements, Linda M. Northrop. Software
Product Lines: Practices and Patterns, SEI
Series in Software Engineering, Addison-
Wesley, 2001

[6] http://www.omg.org/technology/documents/for
mal/xmi.htm

[7] Frank Sauer, “Frame Oriented Programming. A
Unification of Object Oriented Programming
and Aspect Oriented Programming”.
Unpublished, to be submitted to AOSD 2003.

