
Agility in Model-Driven Software Development?
Implications for Organization, Process, and Architecture

Hans Wegener

Swiss Re, Mythenquai 50/60, 8022 Zürich, Switzerland

Phone: +41 (43) 285 27 28, Fax: +41 (43) 282 27 28, E-Mail: Hans_Wegener@swissre.com

Abstract: Agile and model-driven development exhibit different constraints with respect to
how products should be developed that make the two difficult to reconcile under all
circumstances. Model-driven development is most affected by a lack of guaranteed
congruence between model and implementation, which can be the result of an agile
approach. On the other hand, the model-driven approach tends to defer or complicate
feedback, which is critical to agility. If a combination of both approaches is desired, these
are some measures: equal importance for forward and reverse engineering, flexible merge
and diff support, lightweight modeling languages and core assets, intensive use of
interpreter technology, explicit consistency management and structured handling of
inconsistencies.

1. Introduction
Agile and model-driven development can be considered en vogue. Why not put the two together and form
something even better? Reconciling both approaches requires understanding their structural differences; this
position statement analyzes those differences.

Agile development is not based on a rigid execution structure but malleable values. Values are put into practice
by following a set of principles that are adapted to the specific needs of the environment. The Agile Manifesto
[1] values

• individuals and interactions over processes and tools,

• working software over comprehensive documentation,

• customer collaboration over contract negotiation, and

• responding to change over following a plan.

As one instantiation of an agile methodology, Extreme Programming [1] exhibits the following practices:
planning game, small releases, metaphor, simple design, testing, refactoring, pair programming, collective
ownership, continuous integration, sustainable pace, on-site customer, and coding standards. It sees the room for
agility in "small-to-medium-sized teams developing software in the face of vague or rapidly changing
requirements." Cockburn [1] defines agile as "being effective and maneuverable."

In model-driven development as exemplified by the Model Driven Architecture [13, 14] we see a different focus.
Models are built, viewed, and manipulated via UML; transmitted via XMI; and stored in MOF repositories.
From there, software can be generated, or the models interpreted, both either in part or in full. Modeling and
generation happen in one domain, implementation and execution take place in another. We refer to them as
problem and solution domains, respectively [6]. The bottom-line benefits of the self-described "CIO Problem
Solver" are:

• reduced cost throughout the application life-cycle,

• reduced development time for new applications,

• improved application quality,

• increased return on technology investments, and

• rapid inclusion of emerging technology benefits into their existing systems.

A model-driven architecture is a type of architecture that features two layers of distinct nature for the purpose of
increased ease of evolution. Modeling is performed using the problem domain model; the abstractions found at
this layer provide a very stable environment and change slowly. The solution domain is the substrate layer for
actual implementation; it can (but does not have to) change quickly. Providing a mapping from problem domain
to solution domain abstractions facilitates evolution of the problem domain. If the configuration of problem
domain abstractions changes, the mapping takes care of it; if the solution domain abstractions themselves
change, only the mapping must change, but not the problem domain configuration.

2. Comparing the Approaches
At first sight, agile development and model-driven development seem to address the same problem, namely
accelerating development. However, it is not straightforward to compare the two. First, agile development
concentrates on individual software products, while model-driven development is concerned with product lines,
i.e. mass-produced software. We have to make explicit, which lifecycle we talk about: The lifecycle of one
individual product or the lifecycle of the entire product line, including all products developed thereunder?
Second, agility mostly addresses methodological aspects, while the model-driven approach is more concerned
with architectural issues. We must make explicit, if and which aspect of either approach affects aspects of the
other and where they are independent. Third, as it turns out agile and model-driven development address
different combinations of problem domain and solution domain abstraction stability (Figure 1). However, we
have to stress the fact that this picture is not black and white. Overlaps occur, and in reality one will often find a
blend of both.

In our comparison we shall distinguish between the individual product's lifecycle and the lifecycle of an entire
product line. This way it will be easier to tell common issues from ones only arising in a particular context. Also,
we shall take a methodology-centric perspective. This is to accommodate the fact that, as will be illustrated soon,
in model-driven development there exists some body of methodology [4], while architecture plays only a minor
role in agile development theory [1, 2, 5]. Finally, we will identify a conflict of interests between agile and
model-driven development, but are still interested in their reconciliation under premises to be named. We shall
take on a black-and-white position at the start and later focus our interest on the area where both approaches can
be applied.

area of interest

don't do this

agile, incremental, evolutionary

Solution D
om

ain A
bstraction Stability

Problem Domain Abstraction Stability

Low High

L
ow

H
igh

model-driven, generative

waterfall

Figure 1: Domain abstraction stability requirements of agile and model-driven development. The quadrants are not scrictly
separable, the approaches overlap in their coverage of the continuum. We are specifically interested in the overlap between
those located in the top left and bottom right quadrants.

Agile development is a way of handling so-called wicked problems [16]. These types of problems exhibit
volatility predominantly in the problem domain, or the understanding of it. The approach acts along the
dimensions of organization and, to a lesser degree, process. It values individuals and interactions over processes
and tools. While agile development indeed promises to speed up the development process, this is secondary to
being flexible in changing the course a project takes. More specifically, the "highest priority is to satisfy the
customer through early and continuous delivery of [...] software." [1] The method values working software over
comprehensive documentation. As such, complete specifications, proper definition of abstract syntax and
behavioral semantics of an application are only a means to an end, if they are formulated at all. The Agile
Manifesto claims that "the best architectures, requirements, and designs emerge from self-organizing teams." An
agile project will usually not exhibit a lengthy formal requirements capture phase, even though there will be
some effort spent to gather a reasonably good understanding of the problem domain. To the contrary, it is
maintained that for wicked problems it is (at least) unrealistic to (at most) impossible to understand the problem
domain in its entirety. In fact, some problem domains change while the specifications are written.

Given the high demand for flexibility in the problem domain, the solution domain must be tightly constrained in
order to meet the requirements. The Agile Manifesto mandates that "simplicity is essential." Tools, architecture,
design, and implementation are subjected to a lightweight regime: what isn't absolutely necessary is left behind.
The rationale is that anything heavyweight will slow down the readjustment of the project after a shift in
understanding. A corollary is that the solution domain must be very stable, i.e. a firm ground to maneuver on. If
the solution domain isn't stable enough, effort is spent on mastering it, which increases the latency between
formulation of the problem domain specifics and their implementation in the solution domain. However, latency
reduces the feedback frequency, which diverts the project team from its most important task: mutual
understanding between the customer and the development team.

In model-driven development, a number of steps have to be taken before any product can be developed. This can
only pay off if the initial investment of core asset development is leveraged many times. In fact, the OMG [15]
names the following scenarios for appropriate use: application reuse and retargeting, domain concept reuse, or
interoperability. A critical element is the availability of core assets that were developed with all these scenarios
in mind. Hence, the core assets developed during model-driven development are usually more generic than the
artifacts used in agile development, which is yet another distinction.

People are not an explicit feature in model-driven development. The specification of a development problem is
not discovered, it is created as the primary artifact. This claims that the problem domain can be or is already
understood well enough, and that both developer and customer have exactly the same understanding. Then, the
specification of the problem is modeled explicitly (e.g., in the form of UML, PIM, PSM). This is contrary to the
agile development principle that favors face-to-face communication over formalization.

While the OMG says nothing about the development process, model-driven development exhibits a preference.
For this purpose, we distinguish three different types of model-driven development:

1. Conceptualization: An object-oriented domain model is designed in UML and tossed later; the software
itself is implemented by hand.

2. Blueprint: An object-oriented domain model is designed in UML; a blueprint (or framework) of the software
is generated from that, the remaining pieces are programmed by hand.

3. Specification: An object-oriented domain model and the execution specification are designed in UML; the
software is directly generated from there with no manual programming involved. Available core assets [4]
are selected using predefined types, possibly using tagged values and stereotypes from profiles, c.f. [17].

Going from top to bottom the list exhibits an increasing degree of rigidity. While it is perfectly possible in a
conceptualization scenario to implement the solution before the modeling artifact is created, this is already
compromised in the blueprint scenario, because the remaining pieces cannot be created independent of the
framework reference. This goes so far as to rule out any implementation work in the specification scenario.
Obviously, this constrains a developer's (or client's) ability in terms of when he or she will do what. The
permitted task sequence is restricted ranging from moderately to absolutely.

To conclude, model-driven and agile development address different dimensions of the spectrum (Table 1). It is
important to remark here that, of course, this is a black-and-white scenario. However, it shows that the two

exhibit different structural characteristics. It is therefore indicated to examine the chances of reconciling both
and examine the consequences.

3. Reconciling the Approaches

3.1 Interests Addressed
Agile development claims that when the problem domain is volatile or not well understood, the interaction
between customer and developer must be at the center of the approach. In accordance with Dzida and Freitag [1],
we understand the problem of validating analysis and design as an incremental, evolutionary process of
negotiation and finding mutual agreement on the basis of the realized software. The artifact in vivo is the only
concrete object based upon which customer and developer can establish congruence and validate their
understanding of both the problem and the solution.

Agile development also maintains that the process comes second to people and interactions. This explicitly
includes the ability to change the process when the necessity grows from experience. The task sequence and
workflow required to develop the software cannot be predicted and may not be restricted in advance. What is
required is that the technology and the process allow for such changes. The corresponding principle is
controllability [9], which demands that "the user is able to initiate and control the direction [...] of the interaction
until [...] the goal has been met." Controllability places full control of the task sequence and workflow in the
hands of the individual trying to achieve the goal.

Agile development is the constant attempt to maintain simplicity. This is to react flexibly to changing demands.
Anything in excess of what is absolutely necessary would be considered a burden. We need suitability for the
task [9], i.e. to support "the user in the effective and efficient completion of the task." An object-oriented model
is only used if it can be used as a good representation of the problem domain. Domains that exhibit other
characteristics, e.g. relational, logical or functional, are used when more appropriate. A design is refactored [8]
as soon as it no longer adequately represents the understanding of the problem, specifically when the same things
are done in different places.

Model-driven development is based on the design of a software system in UML. The modeling language
provides assets from the problem domain to be composed and further parameterized. Generative techniques map
them onto the solution domain, possibly making use of platform-specific peculiarities. Thus we achieve
congruence between problem domain (design) and solution domain (implementation). The artifact in vitro is
subjected to validation, not the generated product. Mutual understanding between customer and developer is

Agile Development Model-Driven Development

People Have highest priority; interactions between customer
and developer are facilitated.

No explicit role; problem domain model takes role
of discussion platform for customer and developer.

Process Has medium priority; ensures consistency of results
of interactions between people; incremental,
evolutionary.

No explicit role; strong tendency towards waterfall,
less incremental processes.

Technology Has lowest priority; only a means to an end; must be
as simple as possible.

Is at center of approach; problem model (e.g., PIM)
is manipulated, stored in and exchanged between
repositories. Can be used to generate software (e.g.,
using a PSM).

Model Secondary artifact; only produced up-front when
absolutely needed.

Primary artifact; source of generated
implementation.

Software Primary artifact; sole measure of progress. Secondary artifact; depending on solution domain,
provides or adds aspects not covered by
specification.

Table 1: Distinguishing general aspects of agile and model-driven development.

established at the design level. Furthermore, the tasks are sequentialized. The production process is designed up-
front. First comes understanding, then realization, not vice versa.

What the MDA envisions is depicted in Figure 2: Software is designed in UML (or CWM, for that purpose) and
stored in a MOF repository, which acts as a hub. Implementation code is generated from there. Metadata is fully
exchangeable between tools from different vendors. Most important of all, the solution domain is not in the
picture as a source. Reverse engineering, other than forward engineering, plays no prominent role in the
development vision of the OMG.

When agile and model-driven development are compared, it becomes clear why they are difficult to reconcile.
Complementing and extending earlier results [18] and building on our own experience with the CWM [19], the
problems are elaborated in the following section.

3.2 Issues Arising Across a Single Product Lifecycle
In the single product lifecycle scenario, a product is developed on the basis of an already established product
line. We assume that a good understanding of the problem domain has been established, though it is still volatile
(to a certain extent). The core assets have already been developed. Based on these premises, the following issues
arise:

• Unless the software is fully generated from a UML specification, manual work will have to be performed at
the solution domain level. If the development process is expected to be controllable, it may not be rigid.
That, however, will eventually result in incongruences between model and implementation.

• The solution domain may not permit the implementation of certain models. Especially when COTS
components are used in the solution domain, they are often not as open as they should be [11]. There exists a
reverse influence from the solution domain to the problem domain, something that is not part of the MDA
model. It is assumed that learning does no longer take place.

Figure 2: The OMG vision of the MDA, illustrated with the CWM. Source: OMG.

• UML and CWM are not suitable for several modeling problems. In particular, the abstractions provided are
sometimes inadequate, too fine grained or exhibit a wrong level of abstraction [19]. Extensions and
adaptations may be required, causing additional effort.

The first two issues can be arranged around the way feedback is dealt with. In model-driven development plus
agile development, two different layers are the subject of manipulation. If the feedback from the artifact in vivo
conflicts with the assumptions made during modeling, we have to manage them. This, however, is either not part
of the model-driven approach (dealing with reverse influences) or actually challenges basic assumptions
(congruence between model and implementation). The last issue is concerned with the adequacy of UML-based
languages themselves.

3.3 Issues Arising Across the Entire Product Line Lifecycle
Model-driven development revolves around flexibility based on properties of the software architecture, which
are established in a series of steps. Clements and Northrop cite the following tasks as essential: core asset
development, product development, and management [4]. The core assets (product and production constraints,
product line scope, production strategy, etc.) are developed "to establish a production capability." In this scenario
we start from scratch to establish this capability and, based on it, develop at least one product. We assume that
no understanding of the problem domain has been established yet and that it is volatile (to a certain extent). The
core assets have not been developed, and finally, we assume that the cost of identifying the right core assets
outweighs the cost of developing the first product quickly.

• Understanding the problem domain takes time. That means that there is latency between the beginning of
the development effort and the specification of the target UML model. It defers feedback in vitro, which is
crucial for the learning process.

Again, feedback is an issue. While in the previous scenario the interaction between problem and solution domain
played the dominant role, we here are concerned with the timing. In a situation where the problem domain is not
yet understood and partially volatile, the critical ingredient in developing is attaining feedback rapidly. This,
however, is thwarted by the initial effort required to set up production capability.

4. Implications for Organization, Process, and Architecture
The reconciliation of agile and model-driven development is not straightforward. How should this affect
organization, process, and architecture? In order to become more agile, the challenges to be mastered by model-
driven development include the expectation to maintain congruence, the sequentiality of task arrangement,
long(er) latencies, and the reliance on standardized, general-purpose metamodels. We think these issues can be
overcome:

• First and foremost, requirements are not developed, they are discovered. This means that design (problem
domain) and implementation (solution domain) will be out of sync until right before deployment. This
highlights the prominence of continuous exchange between the two levels. Forward and reverse
engineering attain the same importance.

• Flexible merge and difference tools for managing the consistency gap are a must. However, since both
problem and solution domain may evolve at the same time, this integration problem takes on a new level of
complexity. Particularly, reverse engineering and merging will often fall together. It will become necessary
to flexibly associate solution domain artifacts with problem domain artifacts and track changes on both
levels. Different levels of granularity must be offered (c.f. [10], and the next item).

• The integration of problem and solution domain artifacts is more difficult to master with a general-purpose
modeling language. In order to correctly interpret changes in either domain in light of the other, we need an
understanding of concurrent modifications in both domains. We must know which modifications typically
happen at one domain and which corresponding changes in the other they represent. This understanding,
when turned into a model, will be semantically rich and very domain-, possibly even project-specific.

• Consistency must be managed explicitly. During development, the assumption that problem and solution
domain (understanding) are aligned with each other, will no longer hold true. Architecture and development

process must be able to handle inconsistency in a structured fashion. For Nuseibeh at al. [12], inconsistency
management is risk-driven and has a process and a technology component. To ensure convergence of
problem and solution domain, consistency management has to be a continuously managed part of the
development process. Divergence between problem and solution domain artifacts must be averted, which
again calls for proper diff tool support and an understanding of typical changes. Nuseibeh at al. even go as
far as to say that "some inconsistencies never get fixed." As a result, traceability may be limited.

• Interpreter technology speeds understanding. Riehle at al. [17] point out that the latency between
formulation of a requirement and its implementation can make exploration of the possibilities awkward if
not impossible, thereby slowing down the learning process. Their solution is interpreter technology based on
a virtual machine for a domain-specific language (in their case, though, based on UML), which allows for
more rapid prototyping.

• The development process must become more iterative. This means that artifacts must be generated from
problem domain models that do not reflect the entire solution, but parts of it. Comprehensive, complex core
assets with many dependencies to other assets are less suited. To a certain degree, this also means
dismissing comprehensive domain modeling. Things will work better with thin, lightweight core assets. The
preceding means also that complex, general-purpose modeling languages are less suited than lightweight
modeling languages.

• The organization should start co-located, non-hierarchical, and exhibit shared ownership. Of the
organizational alternatives discussed by Bosch [3], especially the development department is the soundest. It
realizes the ideal of co-location, shared ownership, and exhibits a lack of up-front, comprehensive domain
modeling (c.f. XP's practices collective code-ownership, pair-programming, and customer on-site), all in the
interest of accelerating the learning process. Hierarchical and snowflake-type organizations should be
avoided. Scaling and evolving the organization takes it through the state of a business unit with mixed
responsibilities, finally arriving at assigned asset responsibilities.

It is important to note that model-driven development isn't the only approach with interests different from agile
development. Any software development method based on the idea of problem domain models will fall prey to
the problem of mutual understanding between customer and developer once things become complicated or
volatile. However, the question is to what degree that matters. There are problem domains that are so simple or
so well understood that it is indeed viable (if not outright imperative) to apply model-driven development. On
the other hand, some problem domains are so complex or so volatile that an agile development project would be
able to finish before one could even understand the entire problem domain in the first place. Finally, it should
have become obvious that a software solution addressing all of the above concerns will be very complex (thick
on architecture, thin on modeling, could be the motto). This underlines the fact that it is crucially important to
understand the characteristics of problem and solution domain, and to make an informed decision as to which
course to follow.

5. References
1. Agile Alliance: The Agile Manifesto. Available from http://www.agilemanifesto.org

2. Kent Beck: Extreme Programming Explained. Reading 2000 (Addison-Wesley)

3. Jan Bosch: Software Product Lines: Organizational Alternatives. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE 2001),

4. Paul Clements, Linda M. Northrop: Software Product Lines. Practices and Patterns. Reading 2002 (Addison
Wesley)

5. Alistair Cockburn: Agile Software Development. Reading 2001 (Addison-Wesley)

6. Krzysztof Czarnecki, Ulrich Eisenecker: Generative Programming. Reading 2000 (Addison-Wesley)

7. Wolfgang Dzida, Regine Freitag: Making Use of Scenarios for Validating Analysis and Design. IEEE
Transactions on Software Engineering 24(12):1182-1196, December 1998

8. Martin Fowler: Refactoring. Improving the Design of Existing Code. Reading 2001 (Addison-Wesley)

9. International Standardization Organization: ISO 9241, Part 10. Ergonomic Requirements for Office Work
with Visual Display Terminals (VDTs). Dialogue Principles, 1996

10. Christine M. Neuwirth, Ravinder Chandhok, David S. Kaufer, Paul Erion, James Morris, Dale Miller:
Flexible Diff-ing in a Collaborative Writing System. In Proceedings of the 1992 ACM Conference on
Computer Supported Collaborative Work (CSCW 1992), 147-154

11. Linda M. Northrop: SEI's Software Product Line Tenets. IEEE Software, July/August 2002, 32-40

12. Bashar Nuseibeh, Steve Easterbrook and Alessandra Russo: Making Inconsistency Respectable in Software
Development. Journal of Systems and Software 56(11), November 2001

13. Object Management Group: Model Driven Architecture. November 2000. Available from
http://www.omg.org/mda

14. Object Management Group: Model Driven Architecture. July 2001. Available from
http://www.omg.org/mda

15. Object Management Group: Executive Overview. Model Driven Architecture. Available from
http://www.omg.org/mda

16. Mary Poppendieck: Wicked Problems. Software Development Magazine, May 2002

17. Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe: The Architecture of a UML Virtual
Machine. In Proceedings of the 2001 ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2001), 327-341

18. Hans Wegener: Generative Programming and Incompleteness. OOPSLA 2001 Workshop on Generative
Programming. Available from http://www.generative-programming.org/oopsla01-workshop.html

19. Hans Wegener: Adoption of the Common Warehouse Metamodel at Credit Suisse. 4th Workshop of the
Competency Center Data Warehousing 2, University of St. Gallen. Hamburg 2001

