
Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM
Steven Kelly

stevek@metacase.com

1 Introduction
Over the last year or two, interest in Domain-Specific Modeling has grown tremendously:
a few examples will suffice. Bill Gates has said visual modeling will be the most
significant innovation in the next 10 years, reducing coding ‘by a factor of five’
(http://www.adtmag.com/article.asp?id=9166). Microsoft has unveiled the Whitehorse
domain-specific modeling editors for Visual Studio, with an SDK to come that will allow
developers to build their own DSM editors. IBM has released the Eclipse Modeling
Framework and Graphical Editor Framework, offering another way to build your own
DSM editor. Software Development Magazine chose MetaCase’s MetaEdit+ DSM
environment as a finalist in this year’s Jolt software productivity awards.

The Eclipse frameworks and MetaEdit+ offer significantly different approaches to
defining DSM support. In this paper, we examine both approaches and see how they
shape up as tools for DSM developers. First however we must explain what DSM is; for
an overview of how it relates to other similar topics, see the glossary.

DSM is about generating full code directly from models, making software
development 5-10 times faster. The only way of doing so that has worked in practice is to
make both the modeling language and generators domain-specific. Attempts to make a
completely generic modeling language and generators have failed, as might be expected.
Raising the level of abstraction always means sacrificing fine control and complete
generality, for the more important end of productivity. After all, nobody expects control
over the machine code run by a given Java statement, nor is J2EE a good environment for
3D graphics engines.

Different camps have different views on just how specific the DSM languages
should be. At one end of the scale stands the OMG, who would have liked to see
everybody use unadulterated UML. The OMG have now tacitly admitted that full code
generation from UML is not going to happen, and they are pinning their hopes on MDA
(model-driven architecture). At its most basic, this involves transforming one UML model
into another UML model, possibly several times and possibly automatically, then
automatically generating substantial code from the final model.

A manufacturer-sponsored study of UML-based MDA showed productivity
increases of 35% (http://www.compuware.co.uk/pressroom/news/21072003_02.htm).
While good, that is far from the 500%-1000% consistently found with DSM. MDA
proponents envisage higher forms of MDA incorporating elements of DSM, and these
may offer some more hope. In these, the base UML can be extended with domain-specific
enhancements, or even replaced with new MOF-based metamodels. However,
experiences with the former have found current tools lacking the necessary extensibility,
and no tools support the latter.

Simply put, UML is not domain-specific, and UML tools were not designed to
support changing UML. Trying to build domain-specific models in a UML tool is – at
best – like trying to write English in a Spanish version of Word. The GUI labels are all
wrong, and the tool keeps trying to correct your input into something valid for its

language. Worse, since the tool is parsing your input according to the wrong language,
any attempt at translation or code generation will be fraught with difficulties.

This in part explains the lack of adoption of DSM, despite all its promise: existing
CASE tools simply cannot support it. Without tool support, any modeling language is
largely useless, and certainly no code can be generated. Building a CASE tool for your
own modeling language is prohibitively expensive. Even for a simple language, full
CASE support would take man-years to build from scratch.

That is where tools for building DSM editors come in. These tools allow you to
build a completely new modeling language, editor, and code generator for that domain.
The tools can be divided into two classes: code frameworks such as Eclipse’s EMF and
GEF, and metaCASE tools such as MetaEdit+. The frameworks are just that: pure code,
with utility functions and classes useful for building graphical CASE tools. In contrast,
metaCASE tools already implement generic graphical CASE behavior, and the user
supplies the concepts and symbols via the tool’s GUI.

2 Eclipse
Since IBM released its Eclipse IDE and tools as open source, the Java framework has
gathered developers at an impressive rate. Although the Eclipse ‘ecosystem’ of plugin
developers is in no small part funded directly by IBM grants, the spirit is perhaps more
one of enlightened philanthropy than crass commercialism. While Sun is still trying to
decide how best to relate to this new community, Eclipse is already making fruitful
contributions to academic research. Measuring the commercial impact of something that
is free is always difficult, but 18 million downloads is a big number in anyone’s book.

While the main focus of Eclipse has been on its IDE for Java programmers, two
major Eclipse tool projects offer help for modelers too. The Eclipse Modeling Framework
(EMF) allows you to input your desired data model, and can generate simple table-based
editors and an XMI schema for such models. The Graphical Editor Framework (GEF)
supplies functions and classes useful for specifying graphical editors for Eclipse data.
Although you can use EMF and GEF separately, building DSM support requires both –
and of course Eclipse. There is no support for building stand-alone editors. We looked at
the latest Eclipse 3.0 release candidate, RC1, and the corresponding EMF and GEF
versions from www.eclipse.org. As our experience on three CASE tool construction
projects has taught us that the graphics are always more complicated than the model data,
we will spend more time on GEF.

2.1 EMF
The main function of EMF is to provide a data entry and storage environment following a
schema that you supply. EMF does not use the OMG MOF standard, although the design
of the Ecore data model it uses was influenced by MOF. In the EMF team’s experience of
building modeling tools MOF was found to lack necessary features. This mirrors our own
experience of MOF: to pick just one example, the lack of support for n-ary relationships is
an astonishing oversight. The most probable explanation for that, and most likely a large
proportion of the problems, is MOF’s heritage. MOF was created simply to be able to
model UML in UML, and as such was simply a UML subset. Whilst later versions have
tried to give it an existence of its own, it remains clearly tied to its parent. Other groups
that have tried to use MOF as a meta-metamodel seem to have faced the same problem,
invariably coming up with their own extensions to MOF. EMF’s Ecore is thus no
exception.

Your schema, or metamodel, can be fed to EMF in several formats. The native
format is an XMI file, but EMF can also read Rational Rose class models, annotated Java
files, or XSD files, providing these follow its restrictions.

Based on this input, EMF.Codegen can generate a bare bones editor for data
following the schema. The editor uses classes from the EMF.Edit framework to provide
standard table and property sheet views. If the generated editor is not sufficient, you can
add your own code. Providing it is marked correctly, the generator will not overwrite your
code when the schema is updated – although of course it will not update it to reflect the
schema changes either.

You can also build your own code directly on top of the EMF.Edit framework, and
that indeed seems to be the way many developers go. An interesting Norwegian project,
part of www.pats.no, has been working on cell phone service engineering. Their original
solutions used a State Machine pattern, with both state actions and legal transitions hand-
coded in Java. To reduce the work and improve the chances of validating the resulting
system, they wanted to have the state machine represented in a model.

For the simpler parts of the system, they were able to use the EMF code generation
framework on annotated Java and even an existing XSD file. For the more table-based
state editor, they are hand-coding on top of the EMF.Edit framework. Currently that part
is 4000 lines of code, and requires about another three months’ work. The rest of the
editors and property sheets are another few thousand lines of code, with significant parts
generated. In total the project has taken about six man-months so far.

2.2 GEF
EMF only provides part of the solution for DSM: data storage, property sheets, tree or
table-based browsing, and a code generation framework. GEF provides the graphical
support needed for building a diagram editor on top of the EMF framework. Diagrams
bring two vital additions to the modeling experience. Firstly, the human brain is much
better at quickly interpreting and remembering a graphical diagram than text, trees or
tables. Secondly, diagrams show multiple relationships between objects much better than
text or table formats. Whilst a tree format can show one simple kind of relationship well,
it cannot handle object reuse or other relationships.

Strangely, GEF is not particularly designed to take advantage of EMF. The only
thing they really share is their integration with Eclipse change notification. GEF uses a
Model-View-Controller pattern, where the Model can be an EMF model, or something
entirely different. Whilst using GEF, the intention is thus that the Model is largely
ignored, and the main work happens in the Controller. Such a heavy Controller in an
MVC framework is somewhat unusual. In many ways it might have been better to
establish an MVC framework entirely within GEF, with its own true Model to represent
facts like the co-ordinates of a model element. This graphical Model could then have
received change notifications from the EMF model.

The GEF Controller is called an EditPart, and for each EMF model element class
you will normally need to create a corresponding EditPart class. EditParts have a Figure,
which is their graphical view, implemented in the lower-level Draw2D graphical
framework. Designing a symbol for your DSM language thus consists of writing Java
code for its individual lines and curves, which can be painstaking work. Often a second
Figure will be necessary for display when a model element is being moved, e.g. to show
the symbol grayed out.

EditParts respond to events by way of an EditPolicy: most EditParts require their
own EditPolicy class. The job of the EditPolicy is to turn the event request into a
Command. GEF uses the Command pattern to implement an undo stack: all changes to
data must happen through Commands, and each Command must store its own undo
information on the stack, and implement an undo method. Unfortunately, whilst EMF also
has the same pattern, they are implemented in different namespaces, and so cannot be
used together. Instead, the developer must maintain EMF undo information separately
from GEF undo information, and try to maintain consistency between them.

3 MetaEdit+
MetaEdit+ is the most widely-used commercial metaCASE tool, first released in 1995.
The 4.0 SR1 version used here is available from www.metacase.com. MetaEdit+ was
built on the principle that all CASE tools are essentially the same: you can put objects on
a diagram, fill in their properties, connect them with relationships, and move them around.
All that really changes between different modeling languages is what the object types
look like, what properties they have, and how you can connect them.

The MetaEdit+ toolset thus includes generic CASE behavior for objects and
relationships, including a Diagram Editor, Object and Graph Browsers, and property
dialogs. The DSM developer need only specify his modeling language: e.g. creating a
new object type, giving it a name and choosing which property types it has. A vector-
based Symbol Editor allows you to define your object and relationship symbols, or reuse
existing symbols. There is no need for any hand coding, nor is any CASE tool code
generated. The MetaEdit+ editors simply follow the defined language in a similar way to
how Word follows its templates.

In addition to the CASE editing functionality, MetaEdit+ also includes XML import
and export, an API for data and control access to MetaEdit+ functions, and a generic code
generator. The code generator uses a DSL that allows the DSM developer to specify how
to walk through models and output their contents along with other text. This makes
defining code generators simple, with one line of a code generator definition
corresponding to several lines in the scripting languages sometimes used for this purpose.
As the generator has no preconceptions about the modeling language, code language, or
framework the code will run on top of, the DSM developer has complete freedom to
produce the best code possible from the models.

4 Comparison
We had originally intended to implement a small DSM language from scratch in both
Eclipse and MetaEdit+. However, the code for the simplest GEF-only editor weighs in at
130KB (65 files, nearly 5,000 lines) for three object types. At 50 lines of code a day, a
simple COCOMO calculation gives an estimation of over six man-months to complete a
similar project. As implementing a language from scratch was thus out of the question, we
decided to give Eclipse a slight advantage by taking one of its samples and re-
implementing it in MetaEdit+. An unexpected benefit of this is that the Eclipse version of
the sample was thus built by Eclipse experts, and the MetaEdit+ version by a MetaEdit+
expert, leveling the playing field.

As the simplest sample was rather small for a DSM, and behaved somewhat oddly
graphically, we took the second sample. This was a fairly simple Logic Gate language:
you could connect together AND, OR and XOR gates and link them to form circuits with

LED displays and voltage sources (Figure 1). The example was again pure GEF, with no
EMF for data storage or editing: there were essentially no data values to edit.

Figure 1: the Logic example implemented in Eclipse

There was also no code generation from the Logic models, but about 5% of the code
added on some simulation behavior. A connection ‘wire’ could show its true/false status
by changing color, and an LED display could show the values of its inputs. In a normal
DSM scenario, it would be more likely that code could be generated from the model, and
running that code could show the values with different input conditions.

The GEF Java code for the sample was 332KB (120 files, over 10,000 lines). Part of
the code for the LED display type definition is shown in Listing 1, and part of its display
code in Listing 2. To make a ‘clean room’ implementation in MetaEdit+, we looked at the
resulting editor rather than its Java code. The basic concepts of the DSM language were
clear from the type palette, and by playing with the example model we found out how the
gates could be connected. For instance, there was a distinction between ‘in’ and ‘out’
ports on each gate, and connections had to be from an ‘out’ port to an ‘in’ port. These
kinds of rules are one thing that distinguishes DSM editors from simple drawings in
PowerPoint or Visio.

It took about 15 minutes to specify the eight object types along with their port and
connection types and rules. With the author’s limited graphical skills, drawing and fine-
tuning the symbols in the MetaEdit+ Symbol Editor took an additional 45 minutes. The
LED object type and symbol definitions are shown in Figure 2. The total of one hour
included building the same example model as in Eclipse: a useful step in MetaEdit+,
allowing us to test the language while building it.

Figure 2: LED object type and symbol definition in MetaEdit+

The resulting editor (Figure 3) was essentially identical to that in GEF, apart from
omitting the simulation behavior. That could be added using the MetaEdit+ API with no
more code than it took in GEF. Graphical behavior in MetaEdit+ was somewhat better, as
connections followed objects as you dragged them (GEF showed only the object outlines
while dragging). MetaEdit+ of course also included all its other behavior: browsers, XML
import/export, HTML and Word export, multi-user repository etc. Eclipse of course
similarly included its own basic behavior, but most of that had nothing to do with
modeling: only the XML storage can be considered comparable.

Figure 3: the Logic example implemented in MetaEdit+

5 Conclusion
Clearly, using MetaEdit+ to implement the Logic example was far faster than coding with
GEF: one hour, compared to the COCOMO estimate of 13 man-months or 2000 hours for
the GEF implementation. Whilst the exact figure is unimportant, its value in terms of cost
is relevant when comparing the free Eclipse with the commercial MetaEdit+. The effort to
build even this simple editor in GEF would buy you over 10 MetaEdit+ licenses. Full-
scale commercial DSM languages have hundreds of types, leading to development costs
of millions of dollars: enough to buy several hundred MetaEdit+ licenses.

Part of the benefit of metaCASE tools is in their separation of concerns: the
metaCASE tool provider is an expert at building CASE tool functionality, whereas you
are the expert in your domain. This natural division of labor is missing from both fixed-
method CASE tools and DSM coding frameworks. With a fixed-method CASE tool, you
hope the provider is an expert in your domain. With a DSM coding framework like EMF
and GEF, you hope your team can become experts in building CASE tools.

The benefits of the separation also extend to the maintenance phase. As the domain
evolves, with a metaCASE tool only the language definition changes, whereas with a
code-based framework large areas may need recoding. In practice, this often does not
happen, and the hand-coded tool stagnates, drifting ever further from the users’ needs.
Similarly, improvements in CASE technology will be found in the newer versions of both
metaCASE tools and DSM coding frameworks, but with the latter, your own code will
often no longer work. We tried a few editors built with the previous Eclipse version: none
would work with version 3.0.

The EMF framework offers a good solution for those who want to add a measure of
non-graphical modeling into their already strong Eclipse development environment. GEF
is a good basis for companies wanting to build a graphical editor that does not follow the
normal pattern of CASE tool behavior, e.g. a GUI design tool. By also supporting such
behavior, however, it misses the chance to offer optimal support for standard CASE
behavior. CASE tools can be built with GEF, but the amount of coding necessary will turn
many people away.

If IBM intends EMF and GEF to be a serious alternative to metaCASE tools, more
work is needed. An interesting project would be to build a metaCASE tool on top of
EMF/GEF. Whether this would be significantly easier than building a metaCASE tool on
top of any other XML and graphical framework is hard to predict. An extra amount of
work could in theory allow good synchronization between generated code viewed in the
Eclipse IDE and the models from which that code was generated. That would however
presumably also require large amounts of work by the DSM developer. In any case, this
comparison has been of EMF and GEF with metaCASE technology: comparing possible
future developments in either is clearly not viable until they actually occur.

To summarize: with metaCASE tools, you are free to concentrate on your modeling
language, rather than having to implement how each symbol responds to each possible
mouse click and draws each line. With the frameworks, you are free to code any behavior
you want: worthwhile if you really need that specific behavior. Both thus form viable
ways to build DSM support, and your own situation will determine your choice.

6 Glossary: Areas related to DSM

DSL
Domain-Specific Language: a language, normally textual, specifically created for a
narrow range of use. Often parsed to generate code or to configure a more generic
application.

DSM
Domain-Specific Modeling: using a graphical modeling language specifically created for
building a narrow range of applications, e.g. for a family of products within a single
company. Normally includes the idea of full code generation directly from the models,
using a domain-specific code generator. See www.dsmforum.org.

Little languages
A DSL built quickly for limited use. Can be either embedded in an existing language, or
created from scratch. See Dr. Dobb’s March 2004.

MDA
Model Driven Architecture. Officially from OMG, the term is now (mis-)used by
different people in different ways. Original focus on being able to design business
systems independently of the particular middleware solution chosen, by using one UML
model for the high-level design, and another fleshing it out for a specific middleware
implementation. Within IBM, the focus has moved to a more DSM-like approach, where
modeling language concepts are from the domain, although they still envisage using
MOF. See www.omg.org/mda.

MDSD
Model-Driven Software Development. A general term for software development based on
models. Often, but not always, domain-specific models with code generation.

MOF
Meta Object Facility. A subset of UML, intended for use as a language for describing
modeling languages. Its UML bias restricts it largely to describing languages similar to
UML. Adopted as a buzzword by many with varying degrees of conformance to the OMG
standard. See www.omg.org/mof.

Software manufacturing
Largely a synonym for DSM/DSL, but focusing more on generation. Criticizes UML’s
1:1 mapping of modeling constructs to code artifacts, aiming for 1:20 or more. No desire
for reverse engineering – who wants to reverse engineer Assembler to C? See Dr. Dobb’s
April 2004.

Software factories
The Microsoft view of DSM? Strong focus on round-trip engineering and tight integration
with vendor frameworks. Broadly opposed to UML-based MDA and MOF. See article in
Software Development, July 2004.

7 Listing 1
/**

 * Abridged version of LED.java, showing just parts related to property value.
 * Whole file is 3 times as long. In total, the 4 LED classes are 663 lines.
 */

package org.eclipse.gef.examples.logicdesigner.model;

import org.eclipse.gef.examples.logicdesigner.LogicMessages;
import org.eclipse.ui.views.properties.IPropertyDescriptor;
import org.eclipse.ui.views.properties.PropertyDescriptor;
import org.eclipse.ui.views.properties.TextPropertyDescriptor;

public class LED
extends LogicSubpart

{

public static String P_VALUE = "value";
protected static IPropertyDescriptor[] newDescriptors = null;

static{
PropertyDescriptor pValueProp = new TextPropertyDescriptor(P_VALUE,

LogicMessages.PropertyDescriptor_LED_Value);
pValueProp.setValidator(LogicNumberCellEditorValidator.instance());
if(descriptors!=null){

newDescriptors = new IPropertyDescriptor[descriptors.length+1];
for(int i=0;i<descriptors.length;i++)

newDescriptors[i] = descriptors[i];
newDescriptors[descriptors.length] = pValueProp;

} else
newDescriptors = new IPropertyDescriptor[]{pValueProp};

}

public Object getPropertyValue(Object propName) {
if (P_VALUE.equals(propName))

return new Integer(getValue()).toString();
if(ID_SIZE.equals(propName)){

return new String("("+getSize().width+","+getSize().height+")");
}
return super.getPropertyValue(propName);

}

public void resetPropertyValue(Object id){
if (P_VALUE.equals(id))

setValue(0);
super.resetPropertyValue(id);

}

public void setPropertyValue(Object id, Object value){
if (P_VALUE.equals(id))

setValue(Integer.parseInt((String)value));
else

super.setPropertyValue(id,value);
}

}

8 Listing 2
/**
 * Abridged version of LEDFigure.java, showing just unselected symbol display.
 * Whole file is 4 times as long, plus 65 lines for dragged symbol display.
 */

protected void paintFigure(Graphics g) {
Rectangle r = getBounds().getCopy();
g.translate(r.getLocation());
g.setBackgroundColor(LogicColorConstants.logicGreen);
g.setForegroundColor(LogicColorConstants.connectorGreen);
g.fillRectangle(0, 2, r.width, r.height - 4);
int right = r.width - 1;
g.drawLine(0, Y1, right, Y1);
g.drawLine(0, Y1, 0, Y2);

g.setForegroundColor(LogicColorConstants.connectorGreen);
g.drawLine(0, Y2, right, Y2);
g.drawLine(right, Y1, right, Y2);

// Draw the gaps for the connectors
g.setForegroundColor(ColorConstants.listBackground);
for (int i = 0; i < 4; i++) {

g.drawLine(GAP_CENTERS_X[i] - 2, Y1, GAP_CENTERS_X[i] + 3, Y1);
g.drawLine(GAP_CENTERS_X[i] - 2, Y2, GAP_CENTERS_X[i] + 3, Y2);

}

// Draw the connectors
g.setForegroundColor(LogicColorConstants.connectorGreen);
g.setBackgroundColor(LogicColorConstants.connectorGreen);
for (int i = 0; i < 4; i++) {

connector.translate(GAP_CENTERS_X[i], 0);
g.fillPolygon(connector);
g.drawPolygon(connector);
connector.translate(-GAP_CENTERS_X[i], 0);

bottomConnector.translate(GAP_CENTERS_X[i], r.height - 1);
g.fillPolygon(bottomConnector);
g.drawPolygon(bottomConnector);
bottomConnector.translate(-GAP_CENTERS_X[i], -r.height + 1);

}

// Draw the display
g.setBackgroundColor(LogicColorConstants.logicHighlight);
g.fillRectangle(displayHighlight);
g.setBackgroundColor(DISPLAY_SHADOW);
g.fillRectangle(displayShadow);
g.setBackgroundColor(ColorConstants.black);
g.fillRectangle(displayRectangle);

// Draw the value
g.setFont(DISPLAY_FONT);
g.setForegroundColor(DISPLAY_TEXT);
g.drawText(value, valuePoint);

}

