
Generating enterprise applications from models –
experience and best practices

Vinay Kulkarni and Sreedhar Reddy

Tata Research Development and Design Centre, Pune, INDIA

{vinay.vkulkarni, sreedhar.reddy } @ tcs.com

Abstract: Modern business systems need to cater to rapidly evolving business
requirements in an ever-shrinking window of opportunity. Modern business
systems also need to keep pace with rapid advances in technology. Model-
driven development approach addresses these issues by separating the
technology concerns from functionality by providing a set of modeling
notations for specifying different layers of a system namely user interface,
application functionality and database, and a set of code generators that
transform these models into platform-specific implementations. We have used
this approach extensively to construct medium and large-scale enterprise
applications resulting in improved productivity, better quality and platform
independence. We discuss this experience and the best practices that evolved
there from. Large-scale applications benefited from a centralized model
repository that provided a single point of control for integration, change
management and consistent generation of various code and document artifacts.
They also benefited from an architecture-aware special-purpose language for
specifying business logic, a set of abstractions for partitioning the models into
well-defined modules organized into workspaces with a well-defined
integration policy, and a model-driven testing approach for independent unit
testing of client and server sides. This has resulted in improved productivity,
better quality and smoother integration. Small-to-medium scale projects were
predominantly Java or .Net-centric and favoured a light-weight code-centric
development approach. These projects were primarily interested in the benefits
of code generation that MDD provides. The ability to extract models from
annotated Java or C# code which then drive code generation through
customisable code generators, and the ability to weave the generated code into
hand-written code benefited these projects most.

Introduction
Faced with the problem of developing large and complex applications, industrial
practice uses a combination of non-formal notations and methods. Different notations
are used to specify the properties of different aspects of an application and these
specifications are transformed into their corresponding implementations through the
steps of a development process. The development process relies heavily on manual
verification to ensure the different pieces integrate into a consistent whole. This is an
expensive and error-prone process demanding large teams with broad-ranging
expertise in business domain, architecture and technology platforms. In this paper, we
present a model-driven development approach that addresses this problem by
providing a set of modeling notations for specifying different layers of a typical
business application system namely user interface, application functionality and

2 Vinay Kulkarni and Sreedhar Reddy

View of
Unified meta model

GUI layer meta model App layer meta model Db layer meta model

Model-to-code transformation

Db layer codeApp layer codeGUI layer code

Application implementation
Composed of

Instance of

Db layer modelApp layer modelGUI layer model

Application specification Decomposes

Fig. 1. Model based development approach

database; a set of code generators that transform these models into platform-specific
implementations; and an abstraction for organizing application specification into
work-units and an associated tool-assisted development process [4].

The development of an application starts with an abstract specification that is to be
transformed into a concrete implementation on a target architecture [3]. The target
architecture is usually layered with each layer representing one view of the system
e.g. Graphical User Interface (GUI) layer, application logic layer and database layer.
The modeling approach constructs the Application specification using different
abstract views - GUI layer model, App layer model and Db layer model each defining
a set of properties corresponding to the layer it models as shown in Fig. 1.
Corresponding to these specifications are the three meta models - GUI layer meta
model, App layer meta model and Db layer meta model which are views of a single
Unified meta model. Having a single meta model allows us to specify integrity
constraints to be satisfied by the instances of related model elements within and
across different layers. This enables independent transformation of GUI layer model,
App layer model and DB layer model into their corresponding implementations
namely GUI layer code, App layer code and Db layer code. These transformations
can be performed either manually or using code generators. The transformations are
specified at meta model level and hence are applicable for all model instances. If each
individual transformation implements the corresponding specification and its
relationships with other specifications correctly then the resulting implementations
will glue together giving a consistent implementation of the specification as depicted
in Fig. 2. Models can be kept independent of implementation technology and the
application specifications can be targeted to multiple technology platforms through
model-based code generation. Construction of application specification in terms of
independent models helps divide and conquer. Automated code generation results in
higher productivity and uniformly high quality. Modeling helps in early detection of
errors in application development cycle. Associated with every model are a set of
rules and constraints that define validity of its instances. These rules and constraints

Generating enterprise applications from models – experience and best practices 3

could include rules for type checking and for consistency between specifications of
different layers.

Experience
The model-driven development approach described above has been used to develop
several large business applications, a representative set of which is summarized in the
table below [2]. The column Domain model refers to the domain classes and not to the
implementation classes.

Specifications Generated code Project

Domain
model

(no of
classes /
screens)

Size

(kloc)

Kind

Size

(kloc)

Kind

Technology

Platforms

Straight
Through
Processing
system

334 / 0 183 Business
logic,
Business
rules,
Queries

3271 Application
layer,
Database
layer,
Architectur
al glue

IBM S/390, Sun
Solaris, Win
NT, C++, Java,
ICS, MQ Series,
WebSphere,
DB2

Negotiated
dealing
system

303 / 0 46 Business
logic,
Queries

627 Application
layer,

Database
layer,

Architectur
al glue

IBM S/390,
Win NT, C++,
CICS, MQ
Series, COM+,
DB2

Distributor
manageme
nt system

250 / 213 380 Business
logic,
Business
rules,
Queries,
GUI

2670 Application
layer,
Database
layer, GUI
layer,
Architectur
al glue

HP-UX, Java,
JSP, Weblogic,
Oracle, EJB

Insurance
system

105 / 0 357 Business
logic,
Business
rules,
Queries

2700 Application
layer,
Database
layer,
Architectur
al glue

IBM S/390, Sun
Solaris, C++,
Java, CICS,
DB2, CORBA

We discuss our experience in using this approach in these projects and the best
practices that evolved out of that experience. Several projects had a product-family
nature wherein a product-variant needed to be quickly put together and customized to
meet the specific requirements of a customer. Model-driven development approach
helped in quickly retargeting the application functionality on multiple technology

4 Vinay Kulkarni and Sreedhar Reddy

platforms. This was achieved using a relatively unskilled workforce as the technology
and architecture concerns were largely taken care of by the tools. The tool-assisted
component-based development process helped in early detection of errors that would
otherwise have led to late-stage integration problems. Also, all the projects reported
significant improvements in productivity and quality.

Best practices

Best practices for large-scale projects

These projects typically have an average team size of 50 or more and run for about
two or more years.

Prototyping phase

We have found that no two business applications have exactly the same architectural
requirements and hence the same requirements on the tools that deliver into these
architectures. So an upfront prototyping phase wherein a representative sample of the
target application is developed and tested with a representative usage profile is critical
to flesh out the architectural requirements early in the life cycle. Tools can then be
customized to deliver into the validated architecture, before the project proceeds into
design and implementation phases. Tool customization typically involves defining
new meta-models or extending exiting meta models, defining custom model editors if
any, and implementing the code generators that deliver into the chosen architecture.

The alternative of starting with an existing architecture (and the corresponding
toolset) with the hope that it will suffice has proven to be a bad practice. Discovering
an architectural problem when the project is in full swing leads to costly delays and
wasted efforts, requiring retooling, retraining and model porting.

We have found that the time spent in initial architecture prototyping and tooling does
not lead to any significant overall delays, as the project team can concurrently
develop analysis models which are not impacted by the architectural requirements.

Repository-centric development

Large-scale applications by their nature have a large number of components with
large development teams working on them concurrently. It is necessary to carefully
plan and control the project so that all the development artifacts are consistent with
each other and the requirements are implemented consistently across all the parts. A
centralized model repository is found to be an invaluable aid in this effort. The
repository provides the single point of control for coordinating integration, change
management and consistent generation of various code and document artifacts.
Recognizing this benefit many projects have even automated their document
production from the repository by capturing the descriptions as annotations in the
model. Generation from the model ensures that all the documents and their cross
references are consistent.

Special-purpose language for business logic

Generating enterprise applications from models – experience and best practices 5

We have designed a special-purpose high-level language for specifying business logic
of typical business applications that are database centric, transactional and client-
server in nature. Business logic specifies the computations to be performed by the
application. The language is tailored for the architecture and frees the application
developer from low-level implementation concerns such as memory management,
pointers, resource management, etc. Another big advantage, especially for product-
lines, is that it is easily retargetable to programming languages of choice such as Java,
C++, C# etc. So, despite the initial hurdle of project teams having to learn a new
language, all the large projects have found this language to be extremely useful, not
only for its simplicity (leading to productivity and better quality), but also because it
makes it possible for them to deliver their applications in different target languages.

Component-based development process

Large projects have large teams working concurrently. It is extremely important to
have a well-defined process that ensures work products developed by different teams
integrate smoothly while at the same time ensuring adequate separation between the
development of these work products. We addressed this issue by providing two
abstractions: component (not to be confused with a deployment component which is
not necessarily the same) and workspace. Development work products of a project are
divided into a set of components. A component has two parts – a model part and a
code part. A component has an interface that exposes artifacts i.e. model elements
such as classes, operations, queries, etc. that other components can use. A component
has to explicitly declare dependencies on other components whose artifacts it wants to
use, and it is only allowed to use the artifacts that are exposed in their interfaces. A set
of constraints are defined at the meta-model level that check that the consumer-
supplier relationships are correctly honored. These constrains can be arbitrarily
complex going beyond the typical type consistency checks available in the coding
world. For instance, a window should display data that is consistent with respect to
the parameters being passed to the operations invoked from the window.

Each component has an associated workspace in which it is developed. Component
workspaces synchronize themselves with a shared workspace using the check-
in/check-out protocol. On each check-in/check-out the models are validated against
the integration constraints.

Projects that used this process had a significant reduction in integration problems
which are usually a major source of head-ache in large projects.

Model-driven testing

In a typical client-server application, GUI design is the one that undergoes most
number of changes. If there were a way to separate GUI development and testing
from the server side, it would tremendously reduce the change cycle-times. The
testing should include not only look and feel, but other aspects such as tab logic,
enabling-disabling logic, intra- and inter-field validations, window navigation,
checking that right set of objects get created and passed as parameters to server
methods, etc.

In our approach, since GUI is completely modeled, it is possible to automatically

6 Vinay Kulkarni and Sreedhar Reddy

generate a client-only application (with appropriate stubs for server methods) from the
models that can be tested for all the above mentioned properties. This has been found
to greatly speed up GUI development. Test suites are also generated to unit test the
server methods. A test-data generator generates optimal test data by processing the
constraints captured in the object model to exercise the server methods.

The approach has resulted in a significant reduction in the number of bugs discovered
during integration testing.

Synchronization of code and models

One major complaint about the model-driven development approach above was
regarding the overhead associated with small changes. For instance, if an attribute
needed to be added to a class, it had to be added in the model first followed by code
generation to bring it into code, thus resulting in much longer cycle times than in
direct coding approaches.

We have discovered that even a simple round-tripping approach that only reflects
minor changes - such as changes to attributes and method signatures – back into
models goes a long way towards addressing the cycle-time problem. This is because
an overwhelming majority of the changes that people wanted to make directly in code
were indeed such simple ones.

Best practices for small-to-medium scale projects

These projects typically have an average team size of 5 or less and run for about six
months.

Code-centric development

Small projects find model-driven development a heavy weight approach to use due to
the associated steep learning curve that requires a high initial investment in terms of
time and effort that they can not afford. Instead, they prefer to use more traditional
code-centric approaches wherein models are used primarily as documentation aids if
at all. At the same time they want the benefits of code generation that MDD provides.

A majority of these projects are either Java or C# centric. Since a significant amount
of code generation happens directly from class models and since class models (sans
associations) can be extracted from Java (or C#), we can provide the benefits of code
generation to these projects by requiring them to suitably annotate the Java (or C#)
code with tags (or attributes in C#) to provide additional information on the class
models. These annotated class models are then transformed to a form suitable for the
consumption of model-based code generators.

Customizable code generators

Also unlike in large projects, small projects typically can not afford a separate
prototyping phase to validate their architecture upfront. Instead they start with the best
guess and expect to be able to change the architecture later on if required. Which
means that they should have the flexibility to be able to change the code generators
quickly as the need arises. They need open, extensible, easy-to-use, template-driven

Generating enterprise applications from models – experience and best practices 7

code generators that they can quickly customize.

Weaving of generated code into hand-written code

Since large parts of these applications are hand-written directly in the target language,
it is imperative that there exists a good code weaving mechanism, as in AOP [1], that
weaves the generated code into the hand-written code.

Open issues
Despite the many acknowledged benefits, the projects have also reported a few
problems with the approach. In a model-driven development approach, part of the
specification is in model form and part of it in code form. However debugging
support is available only at the code level leading to difficulties in debugging. Also,
the cycle-time required to effect a small change and verify its correctness was found
to be significantly greater for the model-based approach than the traditional approach.
However, the fact that a model-level change gets automatically reflected at multiple
places in a consistent manner was appreciated.

Conclusions
We have presented a model-driven development approach that has been successfully
used to develop and maintain several large-scale business applications. We have
discussed the best practices that have emerged from our experience in these projects.
We have also discussed the needs of the small-to-medium scale projects and how they
can be met. Despite some short-comings the model-driven development approach has
proven to be extremely beneficial in the development of large-scale business
applications, especially product-lines. It has resulted in improved productivity, quality
and a better handle over change management.

References
1. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Videira Lopes, Jean-Marc Longtier and John Irwin. Aspect oriented
programming. ECOOP’97 LNCS 1241, pp 220-242. Springer-Verlag. June 1997.

2. MasterCraft – Component-based Development Environment’ Technical
Documents, Tata Research Development and Design Center.

3. Sreenivas A, Venkatesh R and Joseph M,. Meta-modelling for Formal Software
Development in Proceedings of Computing: the Australian Theory Symposium
(CATS 2001), Gold Coast, Australia, 2001. pp. 1-11

4. Vinay Kulkarni and Sreedhar Reddy, UML Modeling Languages and
Applications, «UML» 2004 Satellite Activities, Lisbon, Portugal, October 11-15,
2004, Revised Selected Papers. Lecture Notes in Computer Science 3297, pp 118
– 128, Springer 2005, ISBN 3-540-25081-6,

http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html

