
Building Durable Enterprise
Architectures

Extending Build versus Buying Decision
Frameworks with Open Source Options

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or

send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.

www.softmetaware.com
© 2005, 2006 Jorn Bettin

Agenda
 9:00am Introduction

 9:15am History of the Open Source Concept

 9:45am Essentials of OSS Licensing

10:00am Basic economics of OSS

10:45am Coffee

11:00am Strategic Assets, Commodities, Liabilities

12:15pm The OSS Value Proposition in 2005

12:30pm Lunch

 1:30pm Open Standards

 2:00pm Discussion : OSS in Government Departments

 2:30pm A Realistic Approach to Enterprise Architecture

 3:00pm Coffee

 3:15pm Using OSS Commodities

 3:45pm Building OSS Assets

 4:00pm Developing a Practical Roadmap for OSS Adoption

 4:15pm Open Discussion & Wrap Up page 2

Introduction

page 3

• Names and roles

• Current level of understanding of the Open Source concept

• Your expectations for today’s workshop

– To be able to assess whether OSS can add value to your organization?

– How to go about evaluating OSS software?

– An overview of those OSS components that are relevant in practice?

– To understand the risks of going down a path of OSS adoption?

– To understand the support process for OSS software?

– To be able to explain the OSS value proposition to your manager?

– To understand why some people in your team keep talking about OSS?

– Other?

• Your goals for the next 12 months regarding OSS

Acknowledgements

page 4

Much of the material in this presentation has its origin in material produced by
key figures in the Open Source community. Hence the slides contain
extensive references.

On many occasions I found that Bruce Perens the guy who announced "Open
Source" to the world, who published his first Open Source program in 1987,
who has been at the center of this revolution from day one already had the
perfect words to explain the essence of Open Source and its economic
impact. Wherever in this presentation you find paragraphs in italics without
an explicit reference, the words are from Bruce - not mine. I strongly
encourage everyone who wants to understand Open Source Software to
read the excellent articles that Bruce has published at http://perens.com.

History of the Open Source
Concept

page 5

Timeline

page 6

• February 1989, Richard Stallman released the GNU project version
1.0 under the GNU General Public License (GPL)

• June 1989, Bill Joy released a free version of UNIX under the
University of California's Berkley Software Distribution (BSD)
license.

• 2000, 17,000 OSS projects on SourceForge

• 2004, 74,000 OSS projects on SourceForge

• 2005, 105,000 OSS projects on SourceForge

• 2010, ???

Definition (OSD)

page 7

The distribution terms of open-source software must comply with the
following criteria (http://www.opensource.org/docs/definition.php):

• 1. Free Redistribution

• 2. Source Code

• 3. Derived Works

• 4. Integrity of The Author's Source Code

• 5. No Discrimination Against Persons or Groups

• 6. No Discrimination Against Fields of Endeavor

• 7. Distribution of License

• 8. License Must Not Be Specific to a Product

• 9. License Must Not Restrict Other Software

• 10. License Must Be Technology-Neutral

Definition (OSD)

page 8

The distribution terms of open-source software must comply with the
following criteria (http://www.opensource.org/docs/definition.php):

• 1. Free Redistribution

• 2. Source Code

• 3. Derived Works

• 4. Integrity of The Author's Source Code

• 5. No Discrimination Against Persons or Groups

• 6. No Discrimination Against Fields of Endeavor

• 7. Distribution of License

• 8. License Must Not Be Specific to a Product

• 9. License Must Not Restrict Other Software

• 10. License Must Be Technology-Neutral

Definition (OSD)

page 9

The distribution terms of open-source software must comply with the
following criteria (http://www.opensource.org/docs/definition.php):

• 1. Free Redistribution

• 2. Source Code

• 3. Derived Works

• 4. Integrity of The Author's Source Code

• 5. No Discrimination Against Persons or Groups

• 6. No Discrimination Against Fields of Endeavor

• 7. Distribution of License

• 8. License Must Not Be Specific to a Product

• 9. License Must Not Restrict Other Software

• 10. License Must Be Technology-Neutral

Original Motivation :
(A) Software Quality

page 10

The rationale behind the OSD:

• Eliminate the temptation to throw away many long-term gains in
order to make a few short-term sales dollars

• Since our purpose is to make evolution easy, we require that
modification be made easy

• For rapid evolution to happen, people need to be able to
experiment with and redistribute modifications

• Users have a right to know who is responsible for the software they
are using. Authors and maintainers have reciprocal right to know
what they're being asked to support and protect their reputations.

• To get the maximum benefit from the process, the maximum
diversity of persons and groups should be equally eligible to
contribute to open sources

Original Motivation :
(B) Prohibit License Traps

page 11

The rationale behind the OSD:

• To prohibit license traps that prevent open source from being used
commercially

• To forbid closing up software by indirect means such as requiring a
non-disclosure agreement

• The rights attached to the program must not depend on the
program's being part of a particular software distribution

• Distributors of open-source software have the right to make their
own choices about their own software

• Conformant licenses must allow for the possibility that (a)
redistribution of the software will take place over non-Web channels
that do not support click-wrapping of the download, and that (b)
the covered code (or re-used portions of covered code) may run in
a non-GUI environment that cannot support popup dialogues

The Rules In Plain English...

page 12

From [LR 2005]: Open Source is built upon a foundation of IP law,
particularly copyright law. OSS is owned by its authors, who license
it to the public under generous terms … [but] The OSD is too
confusing to focus readers on what really matters most...

The key intention of the OSD is captured in five Open Source
Principles:

Licensees are free to

• Use OSS for any purpose whatsoever.

• Make copies of OSS and to distribute them without payment or
royalties to a licensor.

• Create derivative works of OSS and to distribute them without
payment of royalties to a licensor.

• Access and use the source code of OSS.

• Combine OSS and other software.

Practical Reality 2005

page 13

• The key benefit of using Open Source components is reducing
vendor lock-in, and the risk the vendor may go out of business or
discontinue support for a product line

• To date the impact of OSS is felt mainly in the area of infrastructure
software, and not in the business application space

• In the last five years many Open Source infrastructure software
offerings have matured to the point of being rated best-in-class
solutions by experienced software professionals

• In order to minimize TCO and maximize the life expectancy of
software solutions, an understanding in which areas OSS can put to
good use is becoming relevant

Note 1: The boundary between infrastructure (commodities) and value added software
applications is slowly and continuously shifting. Hardly noticable, a bit like Global
Warming...

Note 2: The term infrastructure or platform is relative, and depends on where you sit
in the software supply/food chain

Distrust Simplistic Messages

page 14

• Open Source software is just another temporary fad generated by
the IT [hype] industry that no one will speak of in five years time

– Not true. OSS has been around for many years, and there is no
indication that OSS will disapear. The distributed structure of OSS
development and maintenance avoids the risks of a vendor going under
and unsupported software. In a similar way, the distributed architecture
of the Web is the key mechanism that makes the Web reasonably
robust and resilient.

• Open Source software is the way of the future, and most business
needs can be covered by OSS today

– Not true. As we shall see during the course of this workshop, the

economics of software development virtually guarantee a role for

proprietary software, albeit a continuously changing role.

Essentials of OSS Licensing

page 15

Licensing Taxonomy

page 16

Open Source Licenses fall into four basic categories [LR 2005]:

Academic Licenses (BSD, …)

• Originally created by academic institutions. Allow the software to be used
for whatever purpose whatsoever with no obligation on the part of the
licensee to provide access to derivative works.

Reciprocal Licenses (GPL, … sometimes also called viral licenses)

• Allow the software to be used for whatever purpose whatsoever but require
the licensee to distribute derivative works under the same license.

Standards Licenses (SISSL, …)

• Are used to ensure that industry standard software and documentation is
available to all potential implementers of an industry standard. Some of
these licenses require that differences from the standard be published as a
reference implementation so that the standard can evolve.

Content Licenses (see www.creativecommons.org)

• Apply to copyrightable material other than software such as music, art, film,
literature, etc. that the authors want to make available to the public domain.

Practical Reality

page 17

There are two public commons of free software:

Software licensed under Non-Viral Licences (Academic Licenses)

• Increasingly commercial software vendors donate infrastructure code to the Open
Source community using non-viral licenses.

• It allows these vendors to benefit from the OSS development community, and it reduce
vendor lock-in for their clients.

• It also motivates third parties to contribute, and to create value added products on a
common OSS platform.

• A good example is IBM and the www.eclipse.org community.

Software licensed under Viral Licenses (Reciprocal Licenses)

• GNU and LINUX software is licensed under the GPL.

• The likely interpretation of the GPL by the courts will mean that derivative works are
subject to the GPL’s reciprocity (sometimes called “copyleft”) provision, but collective
works are not. [LR 2005]

• Note: Collective works are collections of independent works are assembled into a
collective whole. Derivative works are based upon one ore more preexisting works,
such as a translation…or any other form in which a work may be recast, transformed,
or adapted. Still, it is easy to see that in the world of software, the boundary is fuzzy.

Certification of OSS Licenses

page 18

• Open Source Initiative (OSI, www.opensource.org) is a non-profit
corporation dedicated to managing and promoting the Open Source
Definition for the good of the community, specifically through the
OSI Certified Open Source Software certification mark and program.

• OSI publishes approved open source licenses.

From www.opensource.org:
The basic idea behind open source is very simple: When programmers can read,

redistribute, and modify the source code for a piece of software, the software evolves.
People improve it, people adapt it, people fix bugs. And this can happen at a speed
that, if one is used to the slow pace of conventional software development, seems
astonishing.

We in the open source community have learned that this rapid evolutionary process
produces better software than the traditional closed model, in which only a very few
programmers can see the source and everybody else must blindly use an opaque block
of bits.

Open Source Initiative exists to make this case to the commercial world.

Basic Economics of Open
Source Software

page 19

OSS Economics 2005

page 20

From Bruce Perens, Senior Research Scientist, Open Source Cyber
Security Policy Research Institute, George Washington University

(http://perens.com/Articles/Economic.html ,
the best explanation of OSS economics that I know of):

It's not immediately obvious how Open Source works economically. ...
the worst consequence of this lack of understanding is that many
people don't understand how Open Source could be sustainable ...
if you look more deeply ... it's easy to establish that Open Source
is both sustainable and of tremendous benefit to the overall
economy.

Open Source can be explained entirely within the context of
conventional open-market economics. Indeed, it turns out that it
has much stronger ties to the phenomenon of capitalism than you
may have appreciated.

Outlook for LINUX

page 21

IDC Software Consulting (http://www.osdl.org/docs/linux_market_overview.pdf)

The Linux Marketplace - Moving From Niche to Mainstream

– Packaged software is the fastest growing market segment within the Linux
marketplace in terms of revenue, growing 44% annually to over $14 billion in 2008.

Server market share predictions for Asia Pacific (excluding Japan) according to
IDC (http://www.zdnetasia.com/insight/specialreports/0,39044853,39202771-
4,00.htm)

– For 2005, the overall spending for server systems is expected to grow at a rate of
6.2%. IDC pegs Microsoft Windows platform growth at 8.1%, Unix at 6.1%, and Linux
at a none-too-modest 28%. In the longer term, compounded annual growth rates for
the various server platforms are as follows: CAGR from 2003 to 2008 is 31% for Linux,
11% for Windows and 3% for Unix. By 2008, market share figures are pegged at Linux,
13%; Windows, 39.1%; and Unix, 38.1%.

Availability of a large pool of MS certified people is a key factor in the
increased adoption of Windows. In contrast, technically competent Linux
professionals are still rare.

What Do These Numbers Mean?

page 22

The unusual acceptance and startling financial figures argue that Open Source
must be the answer to some previously-unfulfilled need. Otherwise we would
not have seen such wild, seemingly absurd phenomena:

– The hobby project of a student in his twenties, Linux, takes over enterprise computing.

– IBM, the epitome of conservative business, de-emphasizes its billion-dollar "AIX"
operating system in favor of a product developed by a loose coalition of programmers
with no financial motive in common, upon whom no corporate directive can be
binding, whose leader has no power but the respect of others.

– Microsoft faces its first serious competitor in a decade: programmers who give away
their work.

These events seem absurd: they certainly don't fit the common economic
paradigm of technology production. A new economic phenomenon is operating,
and to explain it we'll have to look more deeply into the economics of software
production.

Grass Roots Level
 Motivation for OSS

page 23

Perhaps 90% of the software in any business is non-differentiating.
Much of it is referred to as infrastructure, the base upon which
differentiating technology is built. ... such things as operating systems,
web servers, databases, Java application servers and other middle-
ware, graphical user interface desktops, web browsers, email clients,
spreadsheets, word processing, and presentation applications.

Good software developers are attracted to the idea of writing /
contributing to OSS because it allows them to own the tools they build.
Avoidance of employer lock-in: Why develop great tools, if they end
up being owned by an employer?

The Software Iceberg

page 24

Functionality

.NET

Java/J2EE

HTML,
 JavaScript

Oracle

SQL
Server

Windows

Transaction
Handling

Persistence
Framework

UI Controls

Security
Framework

Functionality visible
to Users
differentiating
software

Infrastructure
non-differentiating
software

Infrastructure
development,
maintenance and
evolution should be
shared

“Infrastructure”

Infrastructure Redundancy

page 25

app1
Infrastructure

app4
Infrastructure

app2
Infrastructure

app3
Infrastructure

app1 app2 app3 app4

OracleHTML, JavaScript
Java/J2EE

.NET

SQL
Server

The infrastructure of package business software is not of concern and lies outside your
control. However, the infrastructure of custom applications and also the infrastructure
tools used to integrate packages into your system landscape is within your control.

A key motivation for establishing in-house software architecture standards is the reduction
of infrastructure redundancy.

In a complex environment you will never achieve a “clean” target state, as you are always
playing catch-up with technology churn.

OSS infrastructure is attractive because it offers a way of sharing the burden of
infrastructure development not only across all your applications, but across a wider
community, without creating any vendor lock-in.

OSS Centric Infrastructure
Standardization

page 26

Don’t forget that software development is about communication and collaboration
between people (Alistair Cockburn). The use of OSS infrastructure components is not only
beneficial for your organization in terms of reduced vendor lock-in,

– It also enables your employees to acquire skills that are not tied to technology of a
specific vendor.

– Easily transferable skills and knowledge: With a new employer, it is easier to bring on
board useful OSS software tools than to argue the business case why the
organization should purchase a specific proprietary infrastructure component.

Std corporate
Infrastructure

Std corporate
Infrastructure

app1
app2

app3

Std corporate
Infrastructure

SQL
Server

Oracle
Java/J2EE.NET

More…

Standards

Decoupling

Componentization

Development

Reduction of duplication in
infrastructure by incrementally
migrating applications to a
standard infrastructure.

The standardized
infrastructure can consist of a
mix of OSS and proprietary
components.

Open Source > Buy > Build

page 27

Prospective software entrepreneurs are often asked: how are you going to be the Next
Microsoft? And those who base a business upon Open Source are asked: how are you
going to be the next Microsoft with Free software? [The question]reflects the fact that
most people have been thinking about software from an extremely vendor-centric
viewpoint.

[Only]Around 30% of the software that is written is sold as software. Most software is not
sold at all. It is developed directly for its customer, by the customer's own employees or by
consultants who bill for the service of software creation rather than for the end product.

For the successful introduction of OSS, take the following approach to infrastructure

– For each architectural concern that needs to be addressed: (1) Research OSS options
(2) If no satifsfactory OSS components can be found, research COTS options (3) If
no satisfactory COTS components can be found, ask yourself whether you have not
fallen victim to "not invented here syndrome”, and put too little effort into (1) and (2).

– Software developers love to write "cool code”. And some may not be inclined to
spend time evaluating COTS and OSS software. Provide incentives that make it
attractive for your team to evaluate external infrastructure software. In particular don’t
expect your team to be embrace OSS if the team is measured by the lines of code
produced or some equivalent measure.

Finer Points on the Economics
of Software Development

(Strategic Assets, Commodities, and Liabilities)

page 28

Value-Based Classification of
Software

page 29

The following classification scheme is a useful tool for planning
investments in software:

• Strategic software assets—the heart of your business,
assets that grow into an active human- and machine-usable
knowledge base about your business and processes

• Non-strategic software assets—necessary infrastructure that
is prone to technology churn and should be depreciated over
two to three years

• Software liabilities—legacy that is a cost burden

Classification of Software,
easier said than done...

page 30

The previous slide made it sound easy, but:

• Can you clearly identify distinct parts/modules/sub-systems in your
software system landscape?

– Not just on Powerpoint slides, but in the software source code,

– and in terms of deployable components.

– Have you also got a firm grip on all the inter-dependencies between
the components that make up your systems?

• Once you all dependencies have been identified and documented,
are you able to group the components in such a way that

– Some distinct non-overlapping subsets can be deployed independently
and consititute meaningfull applications, and that

– all other distinct non-overlapping subsets (when deployed in a
particular sequence), add additional meaningfull applications to the
mix?

Minimize spurious complexity, which is driven by the number of
“random” inter-dependencies in your code base.

Note: A Component Architecture needs to define not only a
“technology stack” (a set of infrastructure components), but also the
allowable dependencies between various types of components.

The Value of Modularization

page 31

Tape
Recorder

CD/DVD
Player

Amplifier

TV

Audio

Video

Audio

User
Interface

(the "box")

Mother
Board

Optical
Digital
Output

Electrical
Analog
Output

CD/DVD
driveCD

Specifier

Provider

Assembler Interface Specifier

Transistor
xyz

Laser
Z123

Transistor
uvw

HiFi Components

CD Player Components

Basic Electronic &
Optical Components

Provider

AssemblerSpecifier

Specifier Assembler Interface Specifier

Interface Specifier

Component Architecture
of Your HiFi System

page 32

Specifier

Provider

Assembler Interface Specifier

Compo
nent B

Compo
nentA

Glue To
Framework

Compo
nent

Enterprise Components

Industry Components

Industry Component
Parts & Glue
Components

Provider

AssemblerSpecifier

Specifier Assembler Interface Specifier

Interface Specifier

Component Architecture
In Well-Designed Software

page 33

Dependency Management is
required at all Levels of Abstraction

page 34

Dependency Management -
the Raw Numbers

page 35

of
systems

of potential
point-to-point
interfaces

2 1
4 6
8 28

16 120
32 496
64 2,016

128 8,128

Careless construction
of point-to-point
interfaces is a deadly
trap that looks
harmless at first, and
then “grows on you”
with quadratically
increasing impact

Don’t get distracted by software architects who get lost in
the micro design and only focus on low-level design
patterns. The simplest preventative measure to curb
spurious complexity without being prescriptive at the
micro-level (software developers don’t tend to like that,
and most like to have a degree of artistic freedom) is to
religiously make use of a nested subsystem structure in
the logical model of your system architecture. This
strategy works regardless of the quality of design and
implementation at the micro-level, as long as you deploy
a mechanism that physically enforces this [one single]
design rule.

of
systems

of
subsystems
per system

of potential
dependencies
within subsystem

total # of
dependencies

1 100 4,950 4,950
10 10 45 495

The Maintenance Nightmare
In Pictures

page 36

– Builds & Deployment are a major problem
– Everything depends on everything else
– Cutting corners doesn’t work anymore: any perceived savings are eroded by the escalating costs of

bug-fixes and new features

– Evolving Functionality is “complex” as there are many dependencies
– Changing the DB platform would be close to a re-write
– A significant degree of complexity (= dev. costs) is avoidable by actively managing dependencies

Relational DB

Infrastructure Application Functionality

UI Components

Application
Functionality

Relational DB

Business Rules
Engine

UI Components

Security
Framework

Separation
of Concerns

Target
Source
Base

Non-
Modularized
Source
Base

Code related to:

…

How Can a Distributed OSS Project
Produce Quality Software???

page 37

I hand over to Bruce Perens again:

How do 50 people who haven't met work together to form a viable software product? Part
of the reason this works so well is that software is extremely modular by nature, and thus
many people can work on different segments of the software, almost autonomously, if
they can come to agreement about how the pieces fit together. A good example of this is
the Debian GNU/Linux Distribution. This system includes more than 16,000 software
packages maintained by over 1000 volunteer developers in many nations around the world.
When these packages are combined, the result is a reliable and well-integrated system.
That system has supervised experiments while in orbit on the Space Shuttle, and has a
user community second in size only to Red Hat (yes, it's bigger than Novell).

A Darwinian selection mechanism is at work to ensure that only useful projects
grow big, and the distributed nature of the development team ensures that only
fairly well-modularized software sees the light of day. A co-located team has
less “in-their-face” incentives to produce modularized code.

Examples of Darwinism at Work

page 38

Personal experience with OSS development:

• The Generative Model Transformer project (http://www.eclipse/gmt). A few years ago,
together with a colleague, I started the Generative Model Transformer (GMT) project.
Initially the project was not a spectacular success, and it has now undergone two major
structural changes to date. The original code base of the GMT project has largely
become irrelevant, as mature components such as the openArchitectureWare (oAW) tool
have been integrated into GMT. oAW has attracted well over 30 developers.

• The Eclipse Modeling Framework (EMF) is one of the largest modeling projects on the
Eclipse.org site. From the perspective of Model Driven Software Development the only
interesting aspect of EMF is Ecore, the EMF implementation of the Object Management
Group's Meta Object Facility (MOF) standard for meta modeling. Version 4 of oAW now
allows the use of Ecore. The result is the best of both worlds: Ecore provides a meta
meta model that conforms to the OMG's MOF industry standard, and oAW provides a
powerful model driven template language and a high quality editor for that language.

• The Time Conscious Objects project (http://www.softmetaware.com/tco/overview.html)
is still in its embryonic stage, waiting for a customer that is prepared to fund further
development. The market determines whether the project is taken further.

Evolution in the Open Source gene pool is messy and the future not predictable. However
the results of Open Source Darwinism are quite tangible and convincing.

Traditional SW Product Lifecycle

page 39

Prototype, Core Team

Version 1.0

Must sell and make money,
No time to modularize

Maintenance Nightmare,
Competition catches up

Value decreases, Product
becomes non-differentiating

Product line phased out,
Unsupported Product

Output: Software that
never gets a serious
chance to evolve.

Investors

Next Idea

OSS Evolution

page 40

The Web

Random Projects

Distributed Team,
No Single Point of Failure

Well Modularized Code

Sustainable Software

Evolution

Darwinism

Useful Projects

Reduced Risk,
No Vendor Lock-In

Primordial soup of
resources that can
interact via the web

Incremental refinement
and adaptation to
changing environment

Output: Software that
allows one generation of
software developers to
build on the work of
previous generations.

Open Source > Buy > Build

page 41

Build / Buy / Open Source decisions need to be made at a component level,
and of course components can be nested.

• When buying application software, the vendor effectively dictates the
technology stack, and no further decisions are required.

• The build option leads to further choices between using OSS infrastructure,
buying third-party infrastructure, and using/building custom infrastructure.

Chances are that your custom applications are poorly modularized and heavily
inter-dependent

• Most organizations, especially those that outsource customsoftware
development, only have architectural standards and guidelines on paper.

• External service providers are very rarely held accountable for conforming to
a well-defined component architecture. Mostly they are just held
accountable for using a specific technology stack.

Specifier

Provider

Assembler Interface Specifier

Compo
nent B

Compo
nentA

Glue To
Framework

Compo
nent

Enterprise Components

Industry Components

Industry Component
Parts & Glue
Components

Provider

AssemblerSpecifier

Specifier Assembler Interface Specifier

Interface Specifier

Decision Points

page 42

OSS/Buy/Build
Decision Points

Lifetime Costs of Software
Assets

page 43

For each software component

• consider the full cost of the initial purchase / development

• consider yearly license and maintenance costs

• condider cost of external resources involved in operation and
maintenance

• consider lost opportunity costs of resources that could be doing
something else

• consider transition costs that will be incurred when the component
eventually needs to be replaced because of technological
obsolecence

Off-the-shelf software is subject to the traditional software
product development lifecycle. Therefore investments in
COTS applications need to be depreciated over a realistically
short period.

Evolving Your Software
Portfolio

page 44

• Strategic software assets

– The most economic model for these assets is in-house development.

– If you outsource software development, it is highly recommended that you start
holding suppliers accountable for conforming to well-defined component
architecture standards. These standards need to be a key part of your Enterprise
Architecture.

– With the exception of niche areas where only one vendor offers a viable product,
package software needs to be classified as non-strategic.

• Non-strategic software assets—necessary infrastructure

– Some package software is very useful and the cost is often lower than in-house
development. However most package software should be depreciated over two to
three years.

– OSS stands a higher chance of long-term survival than proprietary package
software.

• Software liabilities—legacy that is a cost burden

– Each day that they are kept on life support drains money that could be used to
create value elsewhere. Need to be replaced ASAP, or simply phased out if
replacement is not critical or perceived as too expensive. Early failure costs less
than deferred failure.

The 30,000 Feet View:
Getting the priorities right

page 45

1. Get serious about “componentization”

• Be realistic, take an incremental but disciplined approach. Start
with a concrete application that needs to be developed or extended
anyhow, so that you don’t introduce change for change’s sake.

• The average software developer is not worried about dependency
management. Provide training and appropriate incentives.

2. Design a clean target component architecture for the selected
application.

• Identify unmaintainable code as a liability that needs to be replaced.
Have the courage to refactor.

• Research the web for appropriate OSS infrastructure components,
and as necessary, adapt your component architecture to take
advantage of OSS components.

3. Execute the project as your OSS pilot project.

Summary

page 46

Classification of software into strategic assets, non-strategic assets,
and liabilities requires some homework in terms of “componentization”
and dependency management.

Much of your custom software is likely to be poorly modularized, and
therefore may easily turn out to be a liability when looking at the hard
numbers of maintenance costs. Identification of sunk costs hurts, but
sooner rather than later minimizes the overall costs.

The above is of critical importance when thinking about introducing
OSS or other new infrastructure software, otherwise the new software
will just contribute to further spurious complexity, and the project will
not produce any measurable positive outcome.

Hence an OSS initiative needs to be tied in to a wider architectural
initiative to reduce spurious complexity and to increase system
maintainability.

The OSS Value Proposition in
2005

page 47

For Smaller Organizations with
Little or No Custom Software

page 48

The potential of OSS lies mainly in the operating system and desktop
space. The following considerations apply:
Training your system administrators in the LINUX operating system,
may be required.
Determine which or your applications are capable of running on a
LINUX server platform, and use the option to migrate servers to LINUX.
Depending on your users, consider replacing at least some of the MS
Office licenses with the use of OpenOffice, which is functionally nearly
equivalent to MS Office.
Replacing the desktop operating system with LINUX is a largely
theoretical option.

For Organizations with
Custom Software

SourceForge hosts over 100,000 projects, most of which are
targeted at software development professionals. Many of these
projects represent dead wood, but this still leaves a staggering
number of high quality OSS components that can be exploited.

The real challenge is not the quality of OSS components in general,
but knowing which OSS components are worthwhile to use.

Especially in the area of software development tooling OSS is
having a major impact. Arguably one of the best decisions that IBM
made in the last five years was when IBM created Eclipse.org. Now
there is a whole ecosystem of open-source projects that plug into
the Eclipse platform. The number of downloads of the latest
release: over 1,000,000 downloads within 60 days!

page 49

Open Standards

page 50

Open Standards - Principles
1.Availability

 Open Standards are available for all to read and implement.

2.Maximize End-User Choice

 Open Standards create a fair, competitive market for implementations of the standard.

3.No Royalty

 Open Standards are free for all to implement, with no royalty or fee.

4.No Discrimination

 Open Standards and the organizations that administer them do not favor one
implementor over another. Certification organizations must provide a path for low and
zero-cost implementations to be validated.

5.Extension or Subset

 Implementations of Open Standards may be extended, or offered in subset form.

6.Predatory Practices

 Open Standards may employ license terms that protect against subversion of the
standard by embrace-and-extend tactics. The licenses attached to the standard may
require the publication of reference information for extensions, and a license for all
others to create, distribute, and sell software that is compatible with the extensions.

page 51

Open Standards - Practice
1. Availability

- The cost of a copy should not far exceed the cost of a college textbook.

- The best practice is for software reference platforms to be licensed in a way that is
compatible with all forms of software licensing, both Free Software (Open Source)
and proprietary.

2. Maximize End-User Choice

- They must allow a wide range of implementations, by businesses, academia, and public
projects. They must support a range of pricing from very expensive to zero-price.

4. No Discrimination

- A standards organization that wishes to support itself through certification branding
should establish a premium track and a low-cost or zero-cost track.

6. Predatory Practices

- The standards organization may wish to apply an agreement similar to the Sun Industry
Standards Source License to the standard documentation and its accompanying
reference implementation. This makes it possible for a standards organization to
actively preserve interoperability without stifling innovation.

page 52

The Relationship between OSS
and Open Standards

• Only in 2002 was an effective definition of open standards
published by the World Wide Web Consortium (W3C) that was truly
compatible with the Open Source concept!

• Standards are developed by industry consortia

• OSS provides an efficient mechanism to create working standards:

• It [OSS] works better than consortia. Companies have poured
millions into consortia to develop software standards. But they
always go down in flames. And open-source projects win over and
over again. Why? It's because open-source licensing makes things
fair for all the partners. In the consortium projects, there's always
the handshake with one hand and a dagger in the other.

page 53

The Relationship between OSS
and Open Standards

• Scot Peterson, HP: Companies cooperate on standards and
compete on implementations

• Hence there is a tendency for standards to reflect lowest common
denominator rather than state-of-the-art

• Development of industry standards is a very slow process.
Examples

– XMI (UML model interchange) and

– QVT (model transformation standard for the OMGs Model Driven
Architecture)

• Open Source implementations provide “substance” to standards
that would otherwise remain theoretical

page 54

W3C Definition of
Open Standards

With respect to a Recommendation developed under this policy, a
W3C Royalty-Free license shall mean a non-assignable, non-
sublicensable license to make/use/sell/distribute implementations
of the Recommendation that :

• Shall be available to all, worldwide, whether or not they are W3C
Members

• May be limited to implementations of the Recommendation, and to
what is required by the Recommendation

• May not be conditioned on payment of royalties, fees or other
consideration

• May be suspended with respect to any licensee when licensor is
sued by licensee for infringement of claims essential to implement
any W3C Recommendation

• ...

http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Requirements

page 55

W3C Definition of
Open Standards - Explanations
Implementations may be limited to implementations of the Recommendation

– Allows a field of use restriction that may limit the development of certain derivatives
works

Implementations may not be conditioned on payment of royalties, fees ...

– This is a key point that can be hard to explain to shareholders, i.e. that more value is
created by distributing the IP freely and sharing in the public commons of free
software

– Open Standards [and OSS] typically relate to commoditized infrastructure rather than
business software. In other words, an open standardization initiative is always a sign
that the industry is ready to commoditize an aspect of technology, in order to move
on and reap greater rewards in application domains that critically depend on these
commodities

Implementations may be suspended with respect to any licensee when licensor
is sued by licensee for infringement of claims essential to implement any W3C
Recommendation

– Similar to the way Open Source licensors are allowed to use their IP to defend
against infrngement lawsuits by others

page 56

Discussion : OSS in
Government Departments

page 57

Discussion Prompter ...
Government's use of Open Source is similar to the way that business approaches Open
Source for its cost centers. However, government is expected to function for the benefit of
the citizens and is not generally thought of as having profit-centers of its own. Rather, it
provides services that enable economic and social activities.

Government contracting should not provide a commercial advantage to a particular vendor
outside of the direct revenue from the products or services purchased. Government should
especially not lock itself to a particular vendor after the contract term because of switching
costs. It's poor policy for government to lock its vendors or citizens into use of a particular
vendor's product for communicating with the government, as this would provide an
inappropriate advantage to the vendor.

All vendors can make use of Open Source components with appropriate licensing, and
thus can facilitate e-government to make use of Open Source for government-to-citizen,
government-to-business and government-to-government interfaces.

Government carries out some activities solely for the public benefit, and can carry out
Open Source development in this capacity. This is generally done through research
funding.

page 58

A Realistic Approach to
Enterprise Architecture

page 59

The Key Factor in an Enterprise
Architecture : People

page 60

A well designed Enterprise Architecture covers the following areas:

People, Process, Business, and Technology

(see www.enterprise-architecture.info)

Trust is the foundation that fosters creativity in people. To create a trusting
environment requires the following elements:

• Listening to employees and acting with urgency

• Appreciation for the work of employees, and recognition that people have
an intrinsic value that's not related to the function they perform at work

• Executives taking responsibility for their actions instead of blaming others

• Executives communicate a shared vision and purpose among employees

When the word employee is substituted with contributor/user, and the word
executive substituted with project leader/core contributor, then the above
fairly accurately describes the atmosphere in successful OSS projects

Software Development

page 61

Alistair Cockburn (Humans and Technology, Cockburn and Associates)
http://alistair.cockburn.us/crystal/articles/cgm/cooperativegamemanifesto.html

Software development is a (series of) cooperative game(s), in which people
use markers and props to inform, remind and inspire themselves and each
other in getting to the next move in the game. The endpoint of the game is an
operating software system; the residue of the game is a set of markers to
inform and assist the players of the next game. The next game is the alteration
or replacement of the system, or creation of a neighboring system.

To produce quality software on time and within budget it is necessary to create
appropriate incentives for all parties involved with the objective of balancing the
rights and responsibilities between end users, internal software professionals,
and external contractors and service providers.

Establish an appropriate balance of rights and responsibilities for all those
involved - in IT and within the business units.

Classify your software assets into strategic and non-strategic assets, and
identify liabilities.

For each software asset, make an informed OSS / Buy / Build decision

Actively control and manage the dependencies between the components in
your system landscape - enforce adherence to your EA

Value the people who are contributing to IT initiatives. Motivation is largely
the result of providing clear incentives and avoiding a discrepancy between
official process and day-to-day reality

Aligning Business Objectives
with IT

page 62

Specifier

Provider

Assembler Interface Specifier

Compo
nent B

Compo
nentA

Glue To
Framework

Compo
nent

Enterprise Components

Industry Components

Industry Component
Parts & Glue
Components

Provider

AssemblerSpecifier

Specifier Assembler Interface Specifier

Interface Specifier

c d Compone nt

c oo lS tuff::
Coo lS tuff

Com pone ntS pe cifica tion

c ompone ntPla tform::
Compone ntPla tform

Com pone ntP la tfo rm S pe cifica tion

Technical Excursion :
The Art of Modularization

page 63

The “façade” design pattern is a good example of
a pattern that is obviously very useful, but is not
specific enough to achieve active dependency
management without further qualification.

No subsystem lives in a vacuum. If a second
subsystem communicates with the first via a
façade, it depends not only on the façade, but also
on the types exposed via the façade. If the second
subsystem makes use of one of these types in its
own façade, all of its clients end up depending on
the first subsystem. The more subsystems end up
depending on the types exposed in the façade of
the first subsystem in the way just illustrated (i.e.
not as direct dependents, but rather as "second
cousins"), the less justification there is for keeping
the type definitions in the first subsystem. However,
none of the other subsystems would provide a
more logical home either… This sets the scene for
the concept of fully externalized interfaces.

c d Compone nt

c oo lS tuff::
Coo lS tuff

Com pone ntS pe cifica tion

c ompone ntPla tform::
Compone ntPla tform

Com pone ntP la tfo rm S pe cifica tion

Fully Externalized Interfaces

page 64

If our component contains "cool
stuff" that we want to promote
for widespread use and reuse,
then it is worthwhile to consider
making certain pieces available
in Open Source format using an
appropriate OSS license.

More precisely, it may make
sense to “open source” the
Component Specification and
the Component Platform (bold
items in the diagram).

c d Compone ntUs e

c ompone ntPlatform:
:

Compone ntPlatformCom pone n tP la tfo rm S pe cifica tion

c oo lS tuff2 ::
CoolS tuff2

Com pone n tS pe cifica tion2

c oo lS tuff3 ::
CoolS tuff3

Com pone n tS pe cifica tion3

c oo lS tuff::
CoolS tuff

Com pone n tS pe cifica tion

page 65

Standarizing the “Language” used
between Components

Shared use of a
Component Platform
within a layer or level
of abstraction.

page 66

Component Extension/Evolution

Functionality of a
component can be
extended without
breaking the code of
existing users of the
component

c d Compone ntExte ns ion

Re a llyCoo lS tuff

Re a llyCoo lS pe cifica tion

Com pone n tS pe cifica tion

« in te rfa ce »
s ome Plac e ::Re a lly CoolS pe c ific a tion

«in te rfa ce »
mac roLe v e lPla tform Impl::Compone ntS pe c ific a tion

c ompone ntPla tform:
:

Compone ntPla tform
Com pone n tP la tfo rm S pe cifica tion

c d Pla tformExte ns ion

pla tformExte ns ion:
:CoolPla tform

CoolP la tfo rm S pe cifica tion

« in te rfa ce »
s omePlac e ::Coo lPla tformS pe c ific a tion

«in te rfa ce »
mac roLe v e lPla tformImpl::Compone ntPla tformS pe c ific a tion

Ultimate lyCoolS tuff

Ultim a te lyCoolS pe cifica ton

Com pone n tS pe cifica tion

« in te rfa ce »
s ome Plac e ::Ultimate ly CoolS pe c ific a ton

« in te rfa ce »
mac roLe v e lPla tformImpl::Compone ntS pe c ific a tion

page 67

Component Platform
Extension/Evolution

Similarly the
functionality of the
component platform
can be extended
without breaking the
code of existing
users of the original
component platform

SOA is a useful concept that needs to be factored into your enterprise
architecture at the right level of abstraction.

It is useful to compare SOA to the Web. From a distance it looks chaotic,
however as you get closer, you expect a meaningful structure at some point,
i.e. when you have hit a home page of an organization. Web sites that lack
structure are not very effective. Think of your enterprise architecture as a
web site, and not as a chaotic, unstructured web.

Use a top down approach to define how you interact with external parties.
This leads to a design where services are explicitly traceable to core
business processes.

The service implementations can then pragmatically consist of a
combination of new components and wrapped up legacy systems - the
important point is not to compromise the external design of the services.

It requires a good understanding of the business domain, and someone
experienced in the skill of API lifting.

And what about Service
Oriented Architecture…?

page 68

Using OSS Commodities

page 69

OSS From a User’s Perspective
A small survey of highly experienced software development
professionals (all from different organizations) from three continents
may not be statistically relevant, but nevertheless produces some
interesting results:

– Only one participant had actively contributed to an OSS project

– Yet on average each participant had experience in using 8 OSS
components, and had on average used each of these 8 components 4
times

– The average rating given to the OSS components was “best OSS
component available on the market”, and 8 OSS components were rated to
be “overall best component on the market for its intended purpose”.

– In total the experience of the 8 participants span 42 OSS components, and
263 instances of OSS component usage.

– All of the components that participants listed were infrastructure
components, none were end user business applications

page 70

OSS Survey Keys

page 71

Usage Key Only count the number of times you have embedded the component in
different ways into your software. I.e. If you have written one wrapper for
the component and have used the wrapper in three products or
applications the count should be 1. If you have used the component in
two different products or applications, exercising different use case
[scenarios], then the count should be 2. Usage is capped at a value of
10, so that 10 effectively represents 10+.
Please do include Linux etc. in the survey. But don't [go overboard] and
list Open Source components distributed with Linux that you are not
explictly using, or which Linux uses behind the scenes without you having
an idea of how these components work and what the relevant APIs look
like. In other words, list all the components where you have worked with
the interface (whether a UI or API), and where you can therefore make a
statement about quality/ease of use.

1=overall best component on the market for its intended purpose,

2=best Open Source component on the market for its intended purpose,
3=one of several useful similar components,
4=does not quite meet my expectation but can be made to work,
5=currently not worthwhile to consider

1=am a core contributor to the project,
2=have contributed new features to the project,
3=have used it to build an application/product,
4=have evaluated it by exercising the functionality or writing test code to
exercise the functionality,
5=have not used it

Experience Key

Rating Key

Top Rating OSS

page 72

Top Rating OSS

Component URL

U
sa

ge

R
at

in
g

E
xp

er
ie

nc
e

eclipse.emf www.eclipse.org/emf/ 3.0 1.0 3.0
logging.apache logging.apache.org 10.0 1.0 3.0
logging.apache.org.log4j logging.apache.org/log4j/ 1.0 1.0 3.0
lowagie.itext www.lowagie.com/iText/ 3.0 1.0 3.0
lucene.apache lucene.apache.org 2.0 1.0 3.0
openArchitectureWare www.openarchitectureware.org 10.0 1.0 1.0
junit www.junit.org 6.0 1.4 3.2
jakarta.apache.tomcat jakarta.apache.org/tomcat/ 2.0 1.5 3.0
jboss www.jboss.org 5.5 1.5 3.5
linux www.linux.org 1.5 1.5 3.0
ant.apache ant.apache.org 8.0 1.8 3.0
eclipse www.eclipse.org 6.6 1.8 3.0
antlr www.antlr.org 2.0 2.0 3.0
apache.axis ws.apache.org/axis/ 1.0 2.0 3.0
aspectj www.eclipse.org/aspectj 1.0 2.0 3.0

Average

Most Used OSS

page 73

Most Used OSS

Component URL

U
sa

ge

R
at

in
g

E
xp

er
ie

nc
e

logging.apache logging.apache.org 10.0 1.0 3.0
openArchitectureWare www.openarchitectureware.org 10.0 1.0 1.0
jakarta.apache.jmeter jakarta.apache.org/jmeter/index.html 10.0 2.0 3.0
jedit www.jedit.org 10.0 2.0 3.0
netbeans www.netbeans.org 10.0 2.0 3.0
squirrel sql client squirrel-sql.sourceforge.net 10.0 2.0 3.0
ant.apache ant.apache.org 8.0 1.8 3.0
apache httpd.apache.org 7.7 2.3 3.0
eclipse www.eclipse.org 6.6 1.8 3.0
cvs www.cvshome.org 6.3 2.5 3.0
junit www.junit.org 6.0 1.4 3.2
jboss www.jboss.org 5.5 1.5 3.5
postgresssql www.postgresql.org 5.0 2.0 3.0
mysql www.mysql.com 3.5 2.0 3.0
eclipse.emf www.eclipse.org/emf/ 3.0 1.0 3.0

Average

Note that the LINUX is not part of the list of most used
15 out of 42 OSS projects

OSS Infrastructure in
the Australian Government

(1) It turns out that the Australian Bureau of Statistics uses a subset of the top
15 components from the survey, and has around 18 months experience in
developing software with OSS infrastructure.

– Low cost of initial participation has been a key driver

– The Eclipse platform is successfully used as a software development and tool
integration platform: user interfaces are being built using Eclipse components, and
custom tools are developed as Eclipse plug-ins

Several components from the Apache project are being used

As a result of the success to date, the use of further OSS components is being
investigated

(2) The Department of Veterans Affairs is/was considering replacing MS Office
with OSS office software, but is encountering some difficulties.

page 74

Building OSS Assets

page 75

The Cost of Building OSS
The cost-of-participation in mature Open Source projects is very different from the costs
of retail or in-house and contract development. The major expense is the time-cost of
employee participation. This figure is a combination of the personnel cost of software
evaluation, the personnel or contractor resources spent to adapt existing Open Source to
customer needs and to support the Open Source for internal users, and the possibility that
time will be invested into software that is eventually replaced due to a failure to track
customer needs. The maximum cost for Open Source would come when there is no
community other than the customer: this would be similar to the cost of contract or in-
house development, in which one customer supports the entire expense. The actual cost
will be lower depending on the number of active participants and the work required. The
lost investment is generally personnel time.

Taking this into account, the Open Source paradigm yields an economic efficiency at least
as great as the in-house and contract development paradigm, and much greater than the
retail paradigm.

page 76

OSS - “The” Paradigm for
Infrastructure Software

If you have determined that you need infrastructure software that is not
available in the form of existing OSS, and where commercial
proprietary options are either also non-existent, or limited to very few
vendors with high price tags, then you may want to consider building
and releasing appropriate componentry under an Open Source license.

– You don’t lose anything by donating non-differentiating software to the
public domain

– Instead you potentially provide a seed that gets picked up by other
interested parties who contribute valuable features from which you - and
the software community as a whole - can benefit.

– If, at some point in time, a commercial software vendor takes an interest,
and develops useful add-on functionality, the result is positive rather than
negative: the OSS project community remains in control of the OSS
foundation, and the vendor won’t bite the hand that feeds them.

page 77

OSS as a Quality/Standarization
Driver

Making a Component Specification and the corresponding Component Platform including its

specification Open Source, promotes competition for cost efficient implementations. The first step
might be a competitor who comes up with a better implementation of your "cool stuff", i.e. it may
perform better, require less memory, but adheres to the same specification. In particular if your
"cool stuff" has been successful (others have built on it), there will be a strong incentive for the
competitor to support the interface of the original "cool stuff" component.

However, why would a commercial software vendor be interested in opening up commercially
successful software in that way? Think about the following:

Making the component specifications available in Open Source form sends a strong message
to the market: we have this "cool stuff", and we want you to use it without needing to worry
about vendor lock-in.

Price is not everything. If the potential market is large, a quick expansion and development of
the market may lead to more revenue than a high price and a completely closed architecture.

The timing in making the relevant source code Open Source can be used as a tool to manage
revenue. It makes sense to have a fairly well featured component/product when “open
sourcing” the specification. The competition will take a while to produce a cheaper clone,
which provides a window of time for recouping the investment into the first release. In case the
original implementation is of high quality, the competition might never catch up. Otherwise,
the original developer can use a competitor's improvement as a stepping stone forward.

page 78

Developing a Practical
Roadmap for OSS Adoption

page 79

In what areas of your EA do you
see the biggest potential for OSS?

page 80

1. Get serious about “componentization”

• Be realistic, take an incremental but disciplined approach
...

• Provide training and appropriate incentives.
...

2. Design a clean target component architecture for the selected
application.

• Identify unmaintainable code as a liability
...

• Research the web for appropriate OSS infrastructure components,
and as necessary, adapt your component architecture to take
advantage of OSS components.
...

3. Execute the project as your OSS pilot project!

Open Discussion
&

Wrap Up

page 81

References and Further
Reading

page 82

Open Source Foundations

page 83

[BP] Articles by Bruce Perens (http://perens.com), in particular:
http://perens.com/Articles/Economic.html

[DOS 1999] Editors Chris DiBona, Sam Ockman, Mark Stone, Open Sources,
Voices from the Open Source Revolution, 1999, O’Reilly, ISBN
1-56592-582-3

[ER 1999] Eric S. Raymond, The Cathedral & the Bazaar, 1999, O’Reilly,
ISBN 0-596-00108-8

[MF 2003] Martin Fink, The Business and Economics of Linux and Open
Source, 2003, Prentice Hall, ISBN 0-13-047677-3

[OSI] Open Source Initiative (www.opensource.org)

Open Source Licensing,
Copyright & IP Law

page 84

[AL 2004] Andrew M. St. Laurent, Open Source & Free Software Licensing,
2004, O’Reilly, ISBN 0-596-00596-00581-4

[BP] Articles by Bruce Perens (http://perens.com), in particular:
http://perens.com/Articles/PatentFarming.html

[CC] Creative Commons (http://creativecommons.org)
[LL 2004] Lawrence Lessig, Free Culture, 2004, The Penguin Press, ISBN

1-59420-006-8

[LL 2001] Lawrence Lessig, The Future of Ideas, 2001, Vintage Books,
ISBN 0-375-72644-6

[LR 2005] Lawrence Rosen, Open Source Licensing, Software Freedom
and Intellectual Property Law, 2005, Prentice Hall, ISBN 0-13-
148787-6

Managing Complexity

page 85

[AB 2000] Alan W. Brown,Large-Scale Component-Based Development, 2000,
Prentice Hall, ISBN 0-13-088720-X

[ABB 2002] Atkinson, C., Bayer, J., Bunse, C., et al, Component-based Product Line
Engineering with UML, 2002,Addison-Wesley, ISBN 0-201-73791-4

[JB 2003] Jorn Bettin, Complexity & Dependency Management,
http://www.softmetaware.com/complexity-and-dependency-
management.pdf

[JB 2004] Jorn Bettin, Model-Driven Software Development: An emerging paradigm
for industrialized software asset development,
http://www.softmetaware.com/mdsd-and-isad.pdf

[LLBR 2005] Editors: L. Liu & B. Roussev, Management of the Object-Oriented
Software Development Process, chapter Managing Complexity with MDSD
(Jorn Bettin), 2005, Idea Group Publishers, ISBN 1-59140-605-6

[Meyer 1997] Bertrand Meyer, Object-oriented software construction, 1997, Prentice
Hall, ISBN 0-13-6291554

[MM 2002] Richard Mitchell, Jim McKim, Design by Contract by Example, 2002,
Addison-Wesley, ISBN 0-201-63460-0

page 86

Thank You!

Jorn Bettin

jorn.bettin@softmetaware.com
www.softmetaware.com

Mobile +41 79 543 3767
Skype Jorn_Bettin

Enabling Your Software To Evolve!

